featuretools.primitives.AverageCountPerUnique#
- class featuretools.primitives.AverageCountPerUnique(skipna=True)[source]#
Determines the average count across all unique value.
- Parameters:
skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null.
Examples
Determine the average count values for all unique items in the input >>> input = [1, 1, 2, 2, 3, 4, 5, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25
Determine the average count values for all unique items in the input with nan values ignored >>> input = [1, 1, 2, 2, 3, 4, 5, None, 6, 7, 8] >>> avg_count_per_unique = AverageCountPerUnique() >>> avg_count_per_unique(input) 1.25
Determine the average count values for all unique items in the input with nan values included >>> input = [1, 2, 2, 3, 4, 5, None, 6, 7, 8, 9] >>> avg_count_per_unique_skipna_false = AverageCountPerUnique(skipna=False) >>> avg_count_per_unique_skipna_false(input) 1.1
Methods
__init__([skipna])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_time