featuretools.primitives.CountBelowMean#
- class featuretools.primitives.CountBelowMean(skipna=True)[source]#
Determines the number of values that are below the mean.
- Parameters:
skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null.
Examples
>>> count_below_mean = CountBelowMean() >>> count_below_mean([1, 2, 3, 4, 10]) 3
The way NaNs are treated can be controlled.
>>> count_below_mean_skipna = CountBelowMean(skipna=False) >>> count_below_mean_skipna([1, 2, 3, 4, 5, None]) nan
Methods
__init__([skipna])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_time