featuretools.primitives.ExpandingCount#
- class featuretools.primitives.ExpandingCount(gap=1, min_periods=1)[source]#
Computes the expanding count of events over a given window.
- Description:
Given a list of datetimes, returns an expanding count starting at the row gap rows away from the current row. An expanding primitive calculates the value of a primitive for a given time with all the data available up to the corresponding point in time.
Input datetimes should be monotonic.
- Parameters:
gap (int, optional) – Specifies a gap backwards from each instance before the usable data begins. Corresponds to number of rows. Defaults to 1.
min_periods (int, optional) – Minimum number of observations required for performing calculations over the window. Defaults to 1.
Examples
>>> import pandas as pd >>> expanding_count = ExpandingCount() >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [nan, 1.0, 2.0, 3.0, 4.0]
We can also control the gap before the expanding calculation.
>>> import pandas as pd >>> expanding_count = ExpandingCount(gap=0) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [1.0, 2.0, 3.0, 4.0, 5.0]
We can also control the minimum number of periods required for the rolling calculation.
>>> import pandas as pd >>> expanding_count = ExpandingCount(min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [nan, nan, nan, 3.0, 4.0]
Methods
__init__([gap, min_periods])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_timeuses_full_dataframe