featuretools.primitives.Entropy#
- class featuretools.primitives.Entropy(dropna=False, base=None)[source]#
- Calculates the entropy for a categorical column - Description:
- Given a list of observations from a categorical column return the entropy of the distribution. NaN values can be treated as a category or dropped. 
 - Parameters:
- dropna (bool) – Whether to consider NaN values as a separate category Defaults to False. 
- base (float) – The logarithmic base to use Defaults to e (natural logarithm) 
 
 - Examples - >>> pd_entropy = Entropy() >>> pd_entropy([1, 2, 3, 4]) 1.3862943611198906 - Methods - __init__([dropna, base])- flatten_nested_input_types(input_types)- Flattens nested column schema inputs into a single list. - generate_name(base_feature_names, ...)- generate_names(base_feature_names, ...)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - stack_on- stack_on_exclude- stack_on_self- uses_calc_time