featuretools.primitives.ExpandingCount#
- class featuretools.primitives.ExpandingCount(gap=1, min_periods=1)[source]#
- Computes the expanding count of events over a given window. - Description:
- Given a list of datetimes, returns an expanding count starting at the row gap rows away from the current row. An expanding primitive calculates the value of a primitive for a given time with all the data available up to the corresponding point in time. - Input datetimes should be monotonic. 
 - Parameters:
- gap (int, optional) – Specifies a gap backwards from each instance before the usable data begins. Corresponds to number of rows. Defaults to 1. 
- min_periods (int, optional) – Minimum number of observations required for performing calculations over the window. Defaults to 1. 
 
 - Examples - >>> import pandas as pd >>> expanding_count = ExpandingCount() >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [nan, 1.0, 2.0, 3.0, 4.0] - We can also control the gap before the expanding calculation. - >>> import pandas as pd >>> expanding_count = ExpandingCount(gap=0) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [1.0, 2.0, 3.0, 4.0, 5.0] - We can also control the minimum number of periods required for the rolling calculation. - >>> import pandas as pd >>> expanding_count = ExpandingCount(min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_count(times).tolist() [nan, nan, nan, 3.0, 4.0] - Methods - __init__([gap, min_periods])- flatten_nested_input_types(input_types)- Flattens nested column schema inputs into a single list. - generate_name(base_feature_names)- generate_names(base_feature_names)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - stack_on- stack_on_exclude- stack_on_self- uses_calc_time- uses_full_dataframe