featuretools.primitives.IsWorkingHours#
- class featuretools.primitives.IsWorkingHours(start_hour=8, end_hour=18)[source]#
- Determines if a datetime falls during working hours on a 24-hour clock. Can configure start_hour and end_hour. - Parameters:
- start_hour (int) – Start hour of workday. Must adhere to 24-hour clock. Default is 8 (8am). 
- end_hour (int) – End hour of workday. Must adhere to 24-hour clock. Default is 18 (6pm). 
 
 - Examples - >>> import numpy as np >>> from datetime import datetime >>> dates = [datetime(2022, 6, 21, 16, 3, 3), ... datetime(2019, 1, 3, 4, 4, 4), ... datetime(2022, 1, 1, 12, 1, 2), ... np.nan] >>> is_working_hour = IsWorkingHours() >>> is_working_hour(dates).tolist() [True, False, True, False] >>> is_working_hour = IsWorkingHours(15, 17) >>> is_working_hour(dates).tolist() [True, False, False, False] - Methods - __init__([start_hour, end_hour])- flatten_nested_input_types(input_types)- Flattens nested column schema inputs into a single list. - generate_name(base_feature_names)- generate_names(base_feature_names)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - stack_on- stack_on_exclude- stack_on_self- uses_calc_time- uses_full_dataframe