from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from scipy import stats
from featuretools.primitives.base.aggregation_primitive_base import (
    AggregationPrimitive
)
from featuretools.utils import convert_time_units
from featuretools.variable_types import (
    Boolean,
    Categorical,
    DatetimeTimeIndex,
    Discrete,
    Index,
    Numeric,
    Variable
)
[docs]class Count(AggregationPrimitive):
    """Determines the total number of values, excluding `NaN`.
    Examples:
        >>> count = Count()
        >>> count([1, 2, 3, 4, 5, None])
        5
    """
    name = "count"
    input_types = [[Index]]
    return_type = Numeric
    stack_on_self = False
    default_value = 0
    def get_function(self):
        return pd.Series.count
    def generate_name(self, base_feature_names, relationship_path_name,
                      parent_entity_id, where_str, use_prev_str):
        return u"COUNT(%s%s%s)" % (relationship_path_name,
                                   where_str, use_prev_str) 
[docs]class Sum(AggregationPrimitive):
    """Calculates the total addition, ignoring `NaN`.
    Examples:
        >>> sum = Sum()
        >>> sum([1, 2, 3, 4, 5, None])
        15.0
    """
    name = "sum"
    input_types = [Numeric]
    return_type = Numeric
    stack_on_self = False
    stack_on_exclude = [Count]
    default_value = 0
    def get_function(self):
        return np.sum 
[docs]class Mean(AggregationPrimitive):
    """Computes the average for a list of values.
    Args:
        skipna (bool): Determines if to use NA/null values. Defaults to
            True to skip NA/null.
    Examples:
        >>> mean = Mean()
        >>> mean([1, 2, 3, 4, 5, None])
        3.0
        We can also control the way `NaN` values are handled.
        >>> mean = Mean(skipna=False)
        >>> mean([1, 2, 3, 4, 5, None])
        nan
    """
    name = "mean"
    input_types = [Numeric]
    return_type = Numeric
[docs]    def __init__(self, skipna=True):
        self.skipna = skipna 
    def get_function(self):
        if self.skipna:
            # np.mean of series is functionally nanmean
            return np.mean
        def mean(series):
            return np.mean(series.values)
        return mean 
[docs]class Mode(AggregationPrimitive):
    """Determines the most commonly repeated value.
    Description:
        Given a list of values, return the value with the
        highest number of occurences. If list is
        empty, return `NaN`.
    Examples:
        >>> mode = Mode()
        >>> mode(['red', 'blue', 'green', 'blue'])
        'blue'
    """
    name = "mode"
    input_types = [Discrete]
    return_type = None
    def get_function(self):
        def pd_mode(s):
            return s.mode().get(0, np.nan)
        return pd_mode 
[docs]class Min(AggregationPrimitive):
    """Calculates the smallest value, ignoring `NaN` values.
    Examples:
        >>> min = Min()
        >>> min([1, 2, 3, 4, 5, None])
        1.0
    """
    name = "min"
    input_types = [Numeric]
    return_type = Numeric
    stack_on_self = False
    def get_function(self):
        return np.min 
[docs]class Max(AggregationPrimitive):
    """Calculates the highest value, ignoring `NaN` values.
    Examples:
        >>> max = Max()
        >>> max([1, 2, 3, 4, 5, None])
        5.0
    """
    name = "max"
    input_types = [Numeric]
    return_type = Numeric
    stack_on_self = False
    def get_function(self):
        return np.max 
[docs]class NumUnique(AggregationPrimitive):
    """Determines the number of distinct values, ignoring `NaN` values.
    Examples:
        >>> num_unique = NumUnique()
        >>> num_unique(['red', 'blue', 'green', 'yellow'])
        4
        `NaN` values will be ignored.
        >>> num_unique(['red', 'blue', 'green', 'yellow', None])
        4
    """
    name = "num_unique"
    input_types = [Discrete]
    return_type = Numeric
    stack_on_self = False
    def get_function(self):
        return pd.Series.nunique 
class NumTrue(AggregationPrimitive):
    """Counts the number of `True` values.
    Description:
        Given a list of booleans, return the number
        of `True` values. Ignores 'NaN'.
    Examples:
        >>> num_true = NumTrue()
        >>> num_true([True, False, True, True, None])
        3
    """
    name = "num_true"
    input_types = [Boolean]
    return_type = Numeric
    default_value = 0
    stack_on = []
    stack_on_exclude = []
    def get_function(self):
        return np.sum
[docs]class PercentTrue(AggregationPrimitive):
    """Determines the percent of `True` values.
    Description:
        Given a list of booleans, return the percent
        of values which are `True` as a decimal.
        `NaN` values are treated as `False`,
        adding to the denominator.
    Examples:
        >>> percent_true = PercentTrue()
        >>> percent_true([True, False, True, True, None])
        0.6
    """
    name = "percent_true"
    input_types = [Boolean]
    return_type = Numeric
    stack_on = []
    stack_on_exclude = []
    default_value = 0
    def get_function(self):
        def percent_true(s):
            return s.fillna(0).mean()
        return percent_true 
class NMostCommon(AggregationPrimitive):
    """Determines the `n` most common elements.
    Description:
        Given a list of values, return the `n` values
        which appear the most frequently. If there are
        fewer than `n` unique values, the output will be
        filled with `NaN`.
    Args:
        n (int): defines "n" in "n most common." Defaults
            to 3.
    Examples:
        >>> n_most_common = NMostCommon(n=2)
        >>> x = ['orange', 'apple', 'orange', 'apple', 'orange', 'grapefruit']
        >>> n_most_common(x).tolist()
        ['orange', 'apple']
    """
    name = "n_most_common"
    input_types = [Discrete]
    return_type = Discrete
    def __init__(self, n=3):
        self.n = n
        self.number_output_features = n
    def get_function(self):
        def n_most_common(x):
            array = np.array(x.value_counts().index[:self.n])
            if len(array) < self.n:
                filler = np.full(self.n - len(array), np.nan)
                array = np.append(array, filler)
            return array
        return n_most_common
[docs]class AvgTimeBetween(AggregationPrimitive):
    """Computes the average number of seconds between consecutive events.
    Description:
        Given a list of datetimes, return the average time (default in seconds)
        elapsed between consecutive events. If there are fewer
        than 2 non-null values, return `NaN`.
    Args:
        unit (str): Defines the unit of time.
            Defaults to seconds. Acceptable values:
            years, months, days, hours, minutes, seconds, milliseconds, nanoseconds
    Examples:
        >>> from datetime import datetime
        >>> avg_time_between = AvgTimeBetween()
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30)]
        >>> avg_time_between(times)
        375.0
        >>> avg_time_between = AvgTimeBetween(unit="minutes")
        >>> avg_time_between(times)
        6.25
    """
    name = "avg_time_between"
    input_types = [DatetimeTimeIndex]
    return_type = Numeric
[docs]    def __init__(self, unit="seconds"):
        self.unit = unit.lower() 
    def get_function(self):
        def pd_avg_time_between(x):
            """Assumes time scales are closer to order
            of seconds than to nanoseconds
            if times are much closer to nanoseconds
            we could get some floating point errors
            this can be fixed with another function
            that calculates the mean before converting
            to seconds
            """
            x = x.dropna()
            if x.shape[0] < 2:
                return np.nan
            if isinstance(x.iloc[0], (pd.Timestamp, datetime)):
                x = x.astype('int64')
                # use len(x)-1 because we care about difference
                # between values, len(x)-1 = len(diff(x))
            avg = (x.max() - x.min()) / (len(x) - 1)
            avg = avg * 1e-9
            # long form:
            # diff_in_ns = x.diff().iloc[1:].astype('int64')
            # diff_in_seconds = diff_in_ns * 1e-9
            # avg = diff_in_seconds.mean()
            return convert_time_units(avg, self.unit)
        return pd_avg_time_between 
[docs]class Skew(AggregationPrimitive):
    """Computes the extent to which a distribution differs from a normal distribution.
    Description:
        For normally distributed data, the skewness should be about 0.
        A skewness value > 0 means that there is more weight in the
        left tail of the distribution.
    Examples:
        >>> skew = Skew()
        >>> skew([1, 10, 30, None])
        1.0437603722639681
    """
    name = "skew"
    input_types = [Numeric]
    return_type = Numeric
    stack_on = []
    stack_on_self = False
    def get_function(self):
        return pd.Series.skew 
[docs]class Std(AggregationPrimitive):
    """Computes the dispersion relative to the mean value, ignoring `NaN`.
    Examples:
        >>> std = Std()
        >>> round(std([1, 2, 3, 4, 5, None]), 3)
        1.414
    """
    name = "std"
    input_types = [Numeric]
    return_type = Numeric
    stack_on_self = False
    def get_function(self):
        return np.std 
[docs]class First(AggregationPrimitive):
    """Determines the first value in a list.
    Examples:
        >>> first = First()
        >>> first([1, 2, 3, 4, 5, None])
        1.0
    """
    name = "first"
    input_types = [Variable]
    return_type = None
    stack_on_self = False
    def get_function(self):
        def pd_first(x):
            return x.iloc[0]
        return pd_first 
[docs]class Last(AggregationPrimitive):
    """Determines the last value in a list.
    Examples:
        >>> last = Last()
        >>> last([1, 2, 3, 4, 5, None])
        nan
    """
    name = "last"
    input_types = [Variable]
    return_type = None
    stack_on_self = False
    def get_function(self):
        def pd_last(x):
            return x.iloc[-1]
        return pd_last 
[docs]class Any(AggregationPrimitive):
    """Determines if any value is 'True' in a list.
    Description:
        Given a list of booleans, return `True` if one or
        more of the values are `True`.
    Examples:
        >>> any = Any()
        >>> any([False, False, False, True])
        True
    """
    name = "any"
    input_types = [Boolean]
    return_type = Boolean
    stack_on_self = False
    def get_function(self):
        return np.any 
[docs]class All(AggregationPrimitive):
    """Calculates if all values are 'True' in a list.
    Description:
        Given a list of booleans, return `True` if all
        of the values are `True`.
    Examples:
        >>> all = All()
        >>> all([False, False, False, True])
        False
    """
    name = "all"
    input_types = [Boolean]
    return_type = Boolean
    stack_on_self = False
    def get_function(self):
        return np.all 
[docs]class TimeSinceLast(AggregationPrimitive):
    """Calculates the time elapsed since the last datetime (default in seconds).
    Description:
        Given a list of datetimes, calculate the
        time elapsed since the last datetime (default in
        seconds). Uses the instance's cutoff time.
    Args:
        unit (str): Defines the unit of time to count from.
            Defaults to seconds. Acceptable values:
            years, months, days, hours, minutes, seconds, milliseconds, nanoseconds
    Examples:
        >>> from datetime import datetime
        >>> time_since_last = TimeSinceLast()
        >>> cutoff_time = datetime(2010, 1, 1, 12, 0, 0)
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30)]
        >>> time_since_last(times, time=cutoff_time)
        150.0
        >>> from datetime import datetime
        >>> time_since_last = TimeSinceLast(unit = "minutes")
        >>> cutoff_time = datetime(2010, 1, 1, 12, 0, 0)
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30)]
        >>> time_since_last(times, time=cutoff_time)
        2.5
    """
    name = "time_since_last"
    input_types = [DatetimeTimeIndex]
    return_type = Numeric
    uses_calc_time = True
[docs]    def __init__(self, unit="seconds"):
        self.unit = unit.lower() 
    def get_function(self):
        def time_since_last(values, time=None):
            time_since = time - values.iloc[-1]
            return convert_time_units(time_since.total_seconds(), self.unit)
        return time_since_last 
[docs]class TimeSinceFirst(AggregationPrimitive):
    """Calculates the time elapsed since the first datetime (in seconds).
    Description:
        Given a list of datetimes, calculate the
        time elapsed since the first datetime (in
        seconds). Uses the instance's cutoff time.
    Args:
        unit (str): Defines the unit of time to count from.
            Defaults to seconds. Acceptable values:
            years, months, days, hours, minutes, seconds, milliseconds, nanoseconds
    Examples:
        >>> from datetime import datetime
        >>> time_since_first = TimeSinceFirst()
        >>> cutoff_time = datetime(2010, 1, 1, 12, 0, 0)
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30)]
        >>> time_since_first(times, time=cutoff_time)
        900.0
        >>> from datetime import datetime
        >>> time_since_first = TimeSinceFirst(unit = "minutes")
        >>> cutoff_time = datetime(2010, 1, 1, 12, 0, 0)
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30)]
        >>> time_since_first(times, time=cutoff_time)
        15.0
    """
    name = "time_since_first"
    input_types = [DatetimeTimeIndex]
    return_type = Numeric
    uses_calc_time = True
[docs]    def __init__(self, unit="seconds"):
        self.unit = unit.lower() 
    def get_function(self):
        def time_since_first(values, time=None):
            time_since = time - values.iloc[0]
            return convert_time_units(time_since.total_seconds(), self.unit)
        return time_since_first 
[docs]class Trend(AggregationPrimitive):
    """Calculates the trend of a variable over time.
    Description:
        Given a list of values and a corresponding list of
        datetimes, calculate the slope of the linear trend
        of values.
    Examples:
        >>> from datetime import datetime
        >>> trend = Trend()
        >>> times = [datetime(2010, 1, 1, 11, 45, 0),
        ...          datetime(2010, 1, 1, 11, 55, 15),
        ...          datetime(2010, 1, 1, 11, 57, 30),
        ...          datetime(2010, 1, 1, 11, 12),
        ...          datetime(2010, 1, 1, 11, 12, 15)]
        >>> round(trend([1, 2, 3, 4, 5], times), 3)
        -0.053
    """
    name = "trend"
    input_types = [Numeric, DatetimeTimeIndex]
    return_type = Numeric
    def get_function(self):
        def pd_trend(y, x):
            df = pd.DataFrame({"x": x, "y": y}).dropna()
            if df.shape[0] <= 2:
                return np.nan
            if isinstance(df['x'].iloc[0], (datetime, pd.Timestamp)):
                x = convert_datetime_to_floats(df['x'])
            else:
                x = df['x'].values
            if isinstance(df['y'].iloc[0], (datetime, pd.Timestamp)):
                y = convert_datetime_to_floats(df['y'])
            elif isinstance(df['y'].iloc[0], (timedelta, pd.Timedelta)):
                y = convert_timedelta_to_floats(df['y'])
            else:
                y = df['y'].values
            x = x - x.mean()
            y = y - y.mean()
            # prevent divide by zero error
            if len(np.unique(x)) == 1:
                return 0
            # consider scipy.stats.linregress for large n cases
            coefficients = np.polyfit(x, y, 1)
            return coefficients[0]
        return pd_trend 
def convert_datetime_to_floats(x):
    first = int(x.iloc[0].value * 1e-9)
    x = pd.to_numeric(x).astype(np.float64).values
    dividend = find_dividend_by_unit(first)
    x *= (1e-9 / dividend)
    return x
def convert_timedelta_to_floats(x):
    first = int(x.iloc[0].total_seconds())
    dividend = find_dividend_by_unit(first)
    x = pd.TimedeltaIndex(x).total_seconds().astype(np.float64) / dividend
    return x
def find_dividend_by_unit(time):
    """Finds whether time best corresponds to a value in
    days, hours, minutes, or seconds.
    """
    for dividend in [86400, 3600, 60]:
        div = time / dividend
        if round(div) == div:
            return dividend
    return 1
[docs]class Entropy(AggregationPrimitive):
    """Calculates the entropy for a categorical variable
    Description:
        Given a list of observations from a categorical
        variable return the entropy of the distribution.
        NaN values can be treated as a category or
        dropped.
    Args:
        dropna (bool): Whether to consider NaN values as a separate category
            Defaults to False.
        base (float): The logarithmic base to use
            Defaults to e (natural logarithm)
    Examples:
        >>> pd_entropy = Entropy()
        >>> pd_entropy([1,2,3,4])
        1.3862943611198906
    """
    name = "entropy"
    input_types = [Categorical]
    return_type = Numeric
    stack_on_self = False
[docs]    def __init__(self, dropna=False, base=None):
        self.dropna = dropna
        self.base = base 
    def get_function(self):
        def pd_entropy(s):
            distribution = s.value_counts(normalize=True, dropna=self.dropna)
            return stats.entropy(distribution, base=self.base)
        return pd_entropy