nlp_primitives.UniversalSentenceEncoder¶
- 
class 
nlp_primitives.UniversalSentenceEncoder[source]¶ Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2)
- Parameters
 None –
Examples
>>> sentences = ["I like to eat pizza", "The roller coaster was built in 1885.", ""] >>> output = universal_sentence_encoder(sentences) >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089]
Methods
__init__()Initialize self.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedask_compatibledefault_valueinput_typesmax_stack_depthnamenumber_output_featuresuses_calc_timeuses_full_entity