featuretools.primitives.Skew¶
-
class
featuretools.primitives.
Skew
[source]¶ Computes the extent to which a distribution differs from a normal distribution.
- Description:
For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more weight in the left tail of the distribution.
Examples
>>> skew = Skew() >>> skew([1, 10, 30, None]) 1.0437603722639681
-
__init__
()¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
()Initialize self.
generate_name
(base_feature_names, …)generate_names
(base_feature_names, …)get_args_string
()get_arguments
()get_dask_aggregation
()get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
dask_compatible
default_value
input_types
max_stack_depth
name
number_output_features
stack_on
stack_on_exclude
stack_on_self
uses_calc_time