nlp_primitives.UniversalSentenceEncoder¶
-
class
nlp_primitives.
UniversalSentenceEncoder
[source]¶ Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2)
- Parameters
None –
Examples
>>> sentences = ["I like to eat pizza", "The roller coaster was built in 1885.", ""] >>> output = universal_sentence_encoder(sentences) >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089]
Methods
__init__
()Initialize self.
generate_name
(base_feature_names)generate_names
(base_feature_names)get_args_string
()get_arguments
()get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
dask_compatible
default_value
input_types
max_stack_depth
name
number_output_features
uses_calc_time
uses_full_entity