nlp_primitives.tensorflow.UniversalSentenceEncoder¶
- class nlp_primitives.tensorflow.UniversalSentenceEncoder[source]¶
Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2)
- Parameters
None –
Examples
>>> sentences = ["I like to eat pizza", "The roller coaster was built in 1885.", ""] >>> # universal_sentence_encoder = UniversalSentenceEncoder() # normal syntax >>> output = universal_sentence_encoder(sentences) # defined in test file >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089]
Methods
__init__
()flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names)generate_names
(base_feature_names)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
uses_calc_time
uses_full_dataframe