nlp_primitives.tensorflow.UniversalSentenceEncoder#
- class nlp_primitives.tensorflow.UniversalSentenceEncoder[source]#
Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2)
- Parameters:
None –
Examples
>>> sentences = ["I like to eat pizza", "The roller coaster was built in 1885.", ""] >>> # universal_sentence_encoder = UniversalSentenceEncoder() # normal syntax >>> output = universal_sentence_encoder(sentences) # defined in test file >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089]
Methods
__init__()flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativecompatibilityAdditional compatible libraries
default_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
series_libraryuses_calc_timeuses_full_dataframe