nlp_primitives.tensorflow.Elmo#
- class nlp_primitives.tensorflow.Elmo[source]#
Transforms a sentence or short paragraph using deep contextualized langauge representations. Usese the following pre-trained model [tfhub model](https://tfhub.dev/google/elmo/2)
- Parameters:
None –
Examples
>>> Elmo = Elmo() >>> words = ["I like to eat pizza", ... "The roller coaster was built in 1885.", ... "When will humans go to mars?"] >>> output = Elmo(words) >>> len(output) 1024 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [-0.3457, -0.4546, 0.2538]
Methods
__init__()flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()install()Attributes
base_ofbase_of_excludecommutativecompatibilityAdditional compatible libraries
default_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
series_librarystack_onstack_on_excludestack_on_selfuses_calc_timeuses_full_dataframe