featuretools.primitives.NumConsecutiveGreaterMean#
- class featuretools.primitives.NumConsecutiveGreaterMean(skipna=True)[source]#
Determines the length of the longest subsequence above the mean.
- Description:
Given a list of numbers, find the longest subsequence of numbers larger than the mean of the entire sequence. Return the length of the longest subsequence.
- Parameters:
skipna (bool) – If this is False and any value in x is NaN, then the result will be NaN. If True, NaN values are skipped. Default is True.
Examples
>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean() >>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6]) 3.0
We can also control the way NaN values are handled.
>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean(skipna=False) >>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6, None]) nan
Methods
__init__([skipna])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativecompatibilityAdditional compatible libraries
default_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
series_librarystack_onstack_on_excludestack_on_selfuses_calc_time