Source code for featuretools.primitives.standard.aggregation.min_primitive
import numpy as np
from woodwork.column_schema import ColumnSchema
from featuretools.primitives.base.aggregation_primitive_base import AggregationPrimitive
from featuretools.utils.gen_utils import Library
[docs]class Min(AggregationPrimitive):
"""Calculates the smallest value, ignoring `NaN` values.
Examples:
>>> min = Min()
>>> min([1, 2, 3, 4, 5, None])
1.0
"""
name = "min"
input_types = [ColumnSchema(semantic_tags={"numeric"})]
return_type = ColumnSchema(semantic_tags={"numeric"})
stack_on_self = False
compatibility = [Library.PANDAS, Library.DASK, Library.SPARK]
description_template = "the minimum of {}"
def get_function(self, agg_type=Library.PANDAS):
if agg_type in [Library.DASK, Library.SPARK]:
return "min"
return np.min