Source code for featuretools.primitives.standard.aggregation.min_primitive

import numpy as np
from woodwork.column_schema import ColumnSchema

from featuretools.primitives.base.aggregation_primitive_base import AggregationPrimitive
from featuretools.utils.gen_utils import Library


[docs]class Min(AggregationPrimitive): """Calculates the smallest value, ignoring `NaN` values. Examples: >>> min = Min() >>> min([1, 2, 3, 4, 5, None]) 1.0 """ name = "min" input_types = [ColumnSchema(semantic_tags={"numeric"})] return_type = ColumnSchema(semantic_tags={"numeric"}) stack_on_self = False compatibility = [Library.PANDAS, Library.DASK, Library.SPARK] description_template = "the minimum of {}" def get_function(self, agg_type=Library.PANDAS): if agg_type in [Library.DASK, Library.SPARK]: return "min" return np.min