Source code for featuretools.primitives.standard.aggregation.skew
import pandas as pd
from woodwork.column_schema import ColumnSchema
from featuretools.primitives.base.aggregation_primitive_base import AggregationPrimitive
from featuretools.utils.gen_utils import Library
[docs]class Skew(AggregationPrimitive):
"""Computes the extent to which a distribution differs from a normal distribution.
Description:
For normally distributed data, the skewness should be about 0.
A skewness value > 0 means that there is more weight in the
left tail of the distribution.
Examples:
>>> skew = Skew()
>>> skew([1, 10, 30, None])
1.0437603722639681
"""
name = "skew"
input_types = [ColumnSchema(semantic_tags={"numeric"})]
return_type = ColumnSchema(semantic_tags={"numeric"})
stack_on = []
stack_on_self = False
description_template = "the skewness of {}"
def get_function(self, agg_type=Library.PANDAS):
return pd.Series.skew