Source code for featuretools.primitives.standard.aggregation.time_since_last_false
import numpy as np
import pandas as pd
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import Boolean, BooleanNullable, Datetime, Double
from featuretools.primitives.base import AggregationPrimitive
[docs]class TimeSinceLastFalse(AggregationPrimitive):
"""Calculates the time since the last `False` value.
Description:
Using a series of Datetimes and a series of Booleans, find the last
record with a `False` value. Return the seconds elapsed between that record
and the instance's cutoff time. Return nan if no values are `False`.
Examples:
>>> from datetime import datetime
>>> time_since_last_false = TimeSinceLastFalse()
>>> cutoff_time = datetime(2010, 1, 1, 12, 0, 0)
>>> times = [datetime(2010, 1, 1, 11, 45, 0),
... datetime(2010, 1, 1, 11, 55, 15),
... datetime(2010, 1, 1, 11, 57, 30)]
>>> booleans = [True, False, True]
>>> time_since_last_false(times, booleans, time=cutoff_time)
285.0
"""
name = "time_since_last_false"
input_types = [
[
ColumnSchema(logical_type=Datetime, semantic_tags={"time_index"}),
ColumnSchema(logical_type=Boolean),
],
[
ColumnSchema(logical_type=Datetime, semantic_tags={"time_index"}),
ColumnSchema(logical_type=BooleanNullable),
],
]
return_type = ColumnSchema(logical_type=Double, semantic_tags={"numeric"})
uses_calc_time = True
stack_on_self = False
default_value = 0
def get_function(self):
def time_since_last_false(datetime_col, bool_col, time=None):
df = pd.DataFrame(
{
"datetime": datetime_col,
"bool": bool_col,
},
).dropna()
if df.empty:
return np.nan
false_indices = df[~df["bool"]]
if false_indices.empty:
return np.nan
last_false_index = false_indices.index[-1]
time_since = time - datetime_col.loc[last_false_index]
return time_since.total_seconds()
return time_since_last_false