Source code for featuretools.primitives.standard.transform.time_series.expanding.expanding_count
import numpy as np
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import Datetime, IntegerNullable
from featuretools.primitives.base.transform_primitive_base import TransformPrimitive
from featuretools.primitives.standard.transform.time_series.utils import (
_apply_gap_for_expanding_primitives,
)
[docs]class ExpandingCount(TransformPrimitive):
"""Computes the expanding count of events over a given window.
Description:
Given a list of datetimes, returns an expanding count starting
at the row `gap` rows away from the current row. An expanding
primitive calculates the value of a primitive for a given time
with all the data available up to the corresponding point in time.
Input datetimes should be monotonic.
Args:
gap (int, optional): Specifies a gap backwards from each instance before the
usable data begins. Corresponds to number of rows. Defaults to 1.
min_periods (int, optional): Minimum number of observations required for performing calculations
over the window. Defaults to 1.
Examples:
>>> import pandas as pd
>>> expanding_count = ExpandingCount()
>>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5)
>>> expanding_count(times).tolist()
[nan, 1.0, 2.0, 3.0, 4.0]
We can also control the gap before the expanding calculation.
>>> import pandas as pd
>>> expanding_count = ExpandingCount(gap=0)
>>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5)
>>> expanding_count(times).tolist()
[1.0, 2.0, 3.0, 4.0, 5.0]
We can also control the minimum number of periods required for the rolling calculation.
>>> import pandas as pd
>>> expanding_count = ExpandingCount(min_periods=3)
>>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5)
>>> expanding_count(times).tolist()
[nan, nan, nan, 3.0, 4.0]
"""
name = "expanding_count"
input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={"time_index"})]
return_type = ColumnSchema(logical_type=IntegerNullable, semantic_tags={"numeric"})
uses_full_dataframe = True
[docs] def __init__(self, gap=1, min_periods=1):
self.gap = gap
self.min_periods = min_periods
def get_function(self):
def expanding_count(datetime_series):
datetime_series = _apply_gap_for_expanding_primitives(
datetime_series,
self.gap,
)
count_series = datetime_series.expanding(
min_periods=self.min_periods,
).count()
num_nans = self.gap + self.min_periods - 1
count_series[range(num_nans)] = np.nan
return count_series
return expanding_count