Source code for nlp_primitives.polarity_score
import numpy as np
import pandas as pd
from featuretools.primitives.base import TransformPrimitive
from nltk.sentiment.vader import SentimentIntensityAnalyzer
from nltk.tokenize.treebank import TreebankWordDetokenizer
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import Double, NaturalLanguage
from nlp_primitives.utilities import clean_tokens
[docs]class PolarityScore(TransformPrimitive):
"""Calculates the polarity of a text on a scale from -1 (negative) to 1 (positive)
Description:
Given a list of strings assign a polarity score from -1 (negative text),
to 0 (neutral text), to 1 (positive text). The functions returns a score
for every given piece of text. If a string is missing, return 'NaN'
Examples:
>>> x = ['He loves dogs', 'She hates cats', 'There is a dog', '']
>>> polarity_score = PolarityScore()
>>> polarity_score(x).tolist()
[0.808, -0.787, 0.0, 0.0]
"""
name = "polarity_score"
input_types = [ColumnSchema(logical_type=NaturalLanguage)]
return_type = ColumnSchema(logical_type=Double, semantic_tags={"numeric"})
default_value = 0
def get_function(self):
dtk = TreebankWordDetokenizer()
def polarity_score(x):
vader = SentimentIntensityAnalyzer()
li = []
def vader_pol(sentence):
return (
vader.polarity_scores(sentence)["pos"]
- vader.polarity_scores(sentence)["neg"]
)
for el in x:
if pd.isnull(el):
li.append(np.nan)
else:
el = clean_tokens(el)
if len(el) < 1:
li.append(0.0)
else:
li.append(vader_pol(dtk.detokenize(el)))
return pd.Series(li)
return polarity_score