featuretools.primitives.CountAboveMean#
- class featuretools.primitives.CountAboveMean(skipna=True)[source]#
Calculates the number of values that are above the mean.
- Parameters:
skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null.
Examples
>>> count_above_mean = CountAboveMean() >>> count_above_mean([1, 2, 3, 4, 5]) 2
The way NaNs are treated can be controlled.
>>> count_above_mean_skipna = CountAboveMean(skipna=False) >>> count_above_mean_skipna([1, 2, 3, 4, 5, None]) nan
Methods
__init__
([skipna])flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names, ...)generate_names
(base_feature_names, ...)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
series_library
stack_on
stack_on_exclude
stack_on_self
uses_calc_time