featuretools.primitives.Entropy#
- class featuretools.primitives.Entropy(dropna=False, base=None)[source]#
Calculates the entropy for a categorical column
- Description:
Given a list of observations from a categorical column return the entropy of the distribution. NaN values can be treated as a category or dropped.
- Parameters:
dropna (bool) – Whether to consider NaN values as a separate category Defaults to False.
base (float) – The logarithmic base to use Defaults to e (natural logarithm)
Examples
>>> pd_entropy = Entropy() >>> pd_entropy([1,2,3,4]) 1.3862943611198906
Methods
__init__([dropna, base])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function([agg_type])Attributes
base_ofbase_of_excludecommutativecompatibilityAdditional compatible libraries
default_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
series_librarystack_onstack_on_excludestack_on_selfuses_calc_time