featuretools.primitives.ExponentialWeightedVariance#
- class featuretools.primitives.ExponentialWeightedVariance(com=None, span=None, halflife=None, alpha=None, ignore_na=False)[source]#
- Computes the exponentially weighted moving variance for a series of numbers - Description:
- Returns the exponentially weighted moving variance for a series of numbers. Exactly one of center of mass (com), span, half-life, and alpha must be provided. Missing values can be ignored when calculating weights by setting ‘ignore_na’ to True. 
 - Parameters:
- com (float) – Specify decay in terms of center of mass for com >= 0. Default is None. 
- span (float) – Specify decay in terms of span for span >= 1. Default is None. 
- halflife (float) – Specify decay in terms of half-life for halflife > 0. Default is None. 
- alpha (float) – Specify smoothing factor alpha directly. Alpha should be greater than 0 and less than or equal to 1. Default is None. 
- ignore_na (bool) – Ignore missing values when calculating weights. Default is False. 
 
 - Examples - >>> exponential_weighted_variance = ExponentialWeightedVariance(com=0.5) >>> exponential_weighted_variance([1, 2, 3, 4]).tolist() [nan, 0.49999999999999983, 0.8461538461538459, 1.1230769230769233] - Missing values can be ignored - >>> ewmv_ignorena = ExponentialWeightedVariance(com=0.5, ignore_na=True) >>> ewmv_ignorena([1, 2, 3, None, 4]).tolist() [nan, 0.49999999999999983, 0.8461538461538459, 0.8461538461538459, 1.1230769230769233] - Methods - __init__([com, span, halflife, alpha, ignore_na])- flatten_nested_input_types(input_types)- Flattens nested column schema inputs into a single list. - generate_name(base_feature_names)- generate_names(base_feature_names)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- compatibility- Additional compatible libraries - default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - series_library- stack_on- stack_on_exclude- stack_on_self- uses_calc_time- uses_full_dataframe