featuretools.primitives.IsWorkingHours#
- class featuretools.primitives.IsWorkingHours(start_hour=8, end_hour=18)[source]#
Determines if a datetime falls during working hours on a 24-hour clock. Can configure start_hour and end_hour.
- Parameters:
start_hour (int) – Start hour of workday. Must adhere to 24-hour clock. Default is 8 (8am).
end_hour (int) – End hour of workday. Must adhere to 24-hour clock. Default is 18 (6pm).
Examples
>>> import numpy as np >>> from datetime import datetime >>> dates = [datetime(2022, 6, 21, 16, 3, 3), ... datetime(2019, 1, 3, 4, 4, 4), ... datetime(2022, 1, 1, 12, 1, 2), ... np.nan] >>> is_working_hour = IsWorkingHours() >>> is_working_hour(dates).tolist() [True, False, True, False] >>> is_working_hour = IsWorkingHours(15, 17) >>> is_working_hour(dates).tolist() [True, False, False, False]
Methods
__init__
([start_hour, end_hour])flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names)generate_names
(base_feature_names)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
series_library
stack_on
stack_on_exclude
stack_on_self
uses_calc_time
uses_full_dataframe