featuretools.primitives.NumConsecutiveGreaterMean#

class featuretools.primitives.NumConsecutiveGreaterMean(skipna=True)[source]#

Determines the length of the longest subsequence above the mean.

Description:

Given a list of numbers, find the longest subsequence of numbers larger than the mean of the entire sequence. Return the length of the longest subsequence.

Parameters:

skipna (bool) – If this is False and any value in x is NaN, then the result will be NaN. If True, NaN values are skipped. Default is True.

Examples

>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean()
>>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6])
3.0

We can also control the way NaN values are handled.

>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean(skipna=False)
>>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6, None])
nan
__init__(skipna=True)[source]#

Methods

__init__([skipna])

flatten_nested_input_types(input_types)

Flattens nested column schema inputs into a single list.

generate_name(base_feature_names, ...)

generate_names(base_feature_names, ...)

get_args_string()

get_arguments()

get_description(input_column_descriptions[, ...])

get_filepath(filename)

get_function()

Attributes

base_of

base_of_exclude

commutative

compatibility

Additional compatible libraries

default_value

Default value this feature returns if no data found.

description_template

input_types

woodwork.ColumnSchema types of inputs

max_stack_depth

name

Name of the primitive

number_output_features

Number of columns in feature matrix associated with this feature

return_type

ColumnSchema type of return

series_library

stack_on

stack_on_exclude

stack_on_self

uses_calc_time