featuretools.primitives.NumConsecutiveGreaterMean#
- class featuretools.primitives.NumConsecutiveGreaterMean(skipna=True)[source]#
Determines the length of the longest subsequence above the mean.
- Description:
Given a list of numbers, find the longest subsequence of numbers larger than the mean of the entire sequence. Return the length of the longest subsequence.
- Parameters:
skipna (bool) – If this is False and any value in x is NaN, then the result will be NaN. If True, NaN values are skipped. Default is True.
Examples
>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean() >>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6]) 3.0
We can also control the way NaN values are handled.
>>> num_consecutive_greater_mean = NumConsecutiveGreaterMean(skipna=False) >>> num_consecutive_greater_mean([1, 2, 3, 4, 5, 6, None]) nan
Methods
__init__
([skipna])flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names, ...)generate_names
(base_feature_names, ...)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
series_library
stack_on
stack_on_exclude
stack_on_self
uses_calc_time