nlp_primitives.tensorflow.Elmo#

class nlp_primitives.tensorflow.Elmo[source]#

Transforms a sentence or short paragraph using deep contextualized langauge representations. Usese the following pre-trained model [tfhub model](https://tfhub.dev/google/elmo/2)

Parameters:

None

Examples

>>> Elmo = Elmo()
>>> words = ["I like to eat pizza",
...          "The roller coaster was built in 1885.",
...          "When will humans go to mars?"]
>>> output = Elmo(words)
>>> len(output)
1024
>>> len(output[0])
3
>>> values = output[:3, 0]
>>> [round(x, 4) for x in values]
[-0.3457, -0.4546, 0.2538]
__init__()[source]#

Methods

__init__()

flatten_nested_input_types(input_types)

Flattens nested column schema inputs into a single list.

generate_name(base_feature_names)

generate_names(base_feature_names)

get_args_string()

get_arguments()

get_description(input_column_descriptions[, ...])

get_filepath(filename)

get_function()

install()

Attributes

base_of

base_of_exclude

commutative

compatibility

Additional compatible libraries

default_value

Default value this feature returns if no data found.

description_template

input_types

woodwork.ColumnSchema types of inputs

max_stack_depth

name

Name of the primitive

number_output_features

Number of columns in feature matrix associated with this feature

return_type

ColumnSchema type of return

series_library

stack_on

stack_on_exclude

stack_on_self

uses_calc_time

uses_full_dataframe