nlp_primitives.tensorflow.Elmo#
- class nlp_primitives.tensorflow.Elmo[source]#
Transforms a sentence or short paragraph using deep contextualized langauge representations. Usese the following pre-trained model [tfhub model](https://tfhub.dev/google/elmo/2)
- Parameters:
None –
Examples
>>> Elmo = Elmo() >>> words = ["I like to eat pizza", ... "The roller coaster was built in 1885.", ... "When will humans go to mars?"] >>> output = Elmo(words) >>> len(output) 1024 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [-0.3457, -0.4546, 0.2538]
Methods
__init__
()flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names)generate_names
(base_feature_names)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()install
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
series_library
stack_on
stack_on_exclude
stack_on_self
uses_calc_time
uses_full_dataframe