from datetime import datetime, timedelta
import numpy as np
import pandas as pd
[docs]def make_temporal_cutoffs(
    instance_ids,
    cutoffs,
    window_size=None,
    num_windows=None,
    start=None,
):
    """Makes a set of equally spaced cutoff times prior to a set of input cutoffs and instance ids.
    If window_size and num_windows are provided, then num_windows of size window_size will be created
    prior to each cutoff time
    If window_size and a start list is provided, then a variable number of windows will be created prior
    to each cutoff time, with the corresponding start time as the first cutoff.
    If num_windows and a start list is provided, then num_windows of variable size will be created prior
    to each cutoff time, with the corresponding start time as the first cutoff
    Args:
        instance_ids (list, np.ndarray, or pd.Series): list of instance ids. This function will make a
            new datetime series of multiple cutoff times for each value in this array.
        cutoffs (list, np.ndarray, or pd.Series): list of datetime objects associated with each instance id.
            Each one of these will be the last time in the new datetime series for each instance id
        window_size (pd.Timedelta, optional): amount of time between each datetime in each new cutoff series
        num_windows (int, optional): number of windows in each new cutoff series
        start (list, optional): list of start times for each instance id
    """
    if window_size is not None and num_windows is not None and start is not None:
        raise ValueError(
            "Only supply 2 of the 3 optional args, window_size, num_windows and start",
        )
    out = []
    for i, id_time in enumerate(zip(instance_ids, cutoffs)):
        _id, time = id_time
        _window_size = window_size
        _start = None
        if start is not None:
            if window_size is None:
                _window_size = (time - start[i]) / (num_windows - 1)
            else:
                _start = start[i]
        to_add = pd.DataFrame()
        to_add["time"] = pd.date_range(
            end=time,
            periods=num_windows,
            freq=_window_size,
            start=_start,
        )
        to_add["instance_id"] = [_id] * len(to_add["time"])
        out.append(to_add)
    return pd.concat(out).reset_index(drop=True) 
def convert_time_units(secs, unit):
    """
    Converts a time specified in seconds to a time in the given units
    Args:
        secs (integer): number of seconds. This function will convert the units of this number.
        unit(str): units to be converted to.
            acceptable values: years, months, days, hours, minutes, seconds, milliseconds, nanoseconds
    """
    unit_divs = {
        "years": 31540000,
        "months": 2628000,
        "days": 86400,
        "hours": 3600,
        "minutes": 60,
        "seconds": 1,
        "milliseconds": 0.001,
        "nanoseconds": 0.000000001,
    }
    if unit not in unit_divs:
        raise ValueError("Invalid unit given, make sure it is plural")
    return secs / (unit_divs[unit])
def convert_datetime_to_floats(x):
    first = int(x.iloc[0].value * 1e-9)
    x = pd.to_numeric(x).astype(np.float64).values
    dividend = find_dividend_by_unit(first)
    x *= 1e-9 / dividend
    return x
def convert_timedelta_to_floats(x):
    first = int(x.iloc[0].total_seconds())
    dividend = find_dividend_by_unit(first)
    x = pd.TimedeltaIndex(x).total_seconds().astype(np.float64) / dividend
    return x
def find_dividend_by_unit(time):
    """Finds whether time best corresponds to a value in
    days, hours, minutes, or seconds.
    """
    for dividend in [86400, 3600, 60]:
        div = time / dividend
        if round(div) == div:
            return dividend
    return 1
def calculate_trend(series):
    # numpy can't handle `Int64` values, so cast to float
    if series.dtype == "Int64":
        series = series.astype("float64")
    df = pd.DataFrame({"x": series.index, "y": series.values}).dropna()
    if df.shape[0] <= 2:
        return np.nan
    if isinstance(df["x"].iloc[0], (datetime, pd.Timestamp)):
        x = convert_datetime_to_floats(df["x"])
    else:
        x = df["x"].values
    if isinstance(df["y"].iloc[0], (datetime, pd.Timestamp)):
        y = convert_datetime_to_floats(df["y"])
    elif isinstance(df["y"].iloc[0], (timedelta, pd.Timedelta)):
        y = convert_timedelta_to_floats(df["y"])
    else:
        y = df["y"].values
    x = x - x.mean()
    y = y - y.mean()
    # prevent divide by zero error
    if len(np.unique(x)) == 1:
        return 0
    # consider scipy.stats.linregress for large n cases
    coefficients = np.polyfit(x, y, 1)
    return coefficients[0]