featuretools.primitives.TimeSincePrevious#
- class featuretools.primitives.TimeSincePrevious(unit='seconds')[source]#
Computes the time since the previous entry in a list.
- Parameters:
unit (str) – Defines the unit of time to count from. Defaults to Seconds. Acceptable values: years, months, days, hours, minutes, seconds, milliseconds, nanoseconds
- Description:
Given a list of datetimes, compute the time in seconds elapsed since the previous item in the list. The result for the first item in the list will always be NaN.
Examples
>>> from datetime import datetime >>> time_since_previous = TimeSincePrevious() >>> dates = [datetime(2019, 3, 1, 0, 0, 0), ... datetime(2019, 3, 1, 0, 2, 0), ... datetime(2019, 3, 1, 0, 3, 0), ... datetime(2019, 3, 1, 0, 2, 30), ... datetime(2019, 3, 1, 0, 10, 0)] >>> time_since_previous(dates).tolist() [nan, 120.0, 60.0, -30.0, 450.0]
Methods
__init__([unit])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativecompatibilityAdditional compatible libraries
default_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
series_librarystack_onstack_on_excludestack_on_selfuses_calc_timeuses_full_dataframe