Source code for featuretools.feature_base.feature_visualizer

import html

from featuretools.feature_base.feature_base import (
    AggregationFeature,
    DirectFeature,
    FeatureOutputSlice,
    IdentityFeature,
    TransformFeature
)
from featuretools.feature_base.feature_descriptions import describe_feature
from featuretools.utils.plot_utils import (
    check_graphviz,
    get_graphviz_format,
    save_graph
)

TARGET_COLOR = '#D9EAD3'
TABLE_TEMPLATE = '''<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" CELLPADDING="10">
    <TR>
        <TD colspan="1" bgcolor="#A9A9A9"><B>{dataframe_name}</B></TD>
    </TR>{table_cols}
</TABLE>>'''
COL_TEMPLATE = '''<TR><TD ALIGN="LEFT" port="{}">{}</TD></TR>'''
TARGET_TEMPLATE = '''
    <TR>
        <TD ALIGN="LEFT" port="{}" BGCOLOR="{target_color}">{}</TD>
    </TR>'''.format('{}', '{}', target_color=TARGET_COLOR)


[docs]def graph_feature(feature, to_file=None, description=False, **kwargs): '''Generates a feature lineage graph for the given feature Args: feature (FeatureBase) : Feature to generate lineage graph for to_file (str, optional) : Path to where the plot should be saved. If set to None (as by default), the plot will not be saved. description (bool or str, optional): The feature description to use as a caption for the graph. If False, no description is added. Set to True to use an auto-generated description. Defaults to False. kwargs (keywords): Additional keyword arguments to pass as keyword arguments to the ft.describe_feature function. Returns: graphviz.Digraph : Graph object that can directly be displayed in Jupyter notebooks. ''' graphviz = check_graphviz() format_ = get_graphviz_format(graphviz=graphviz, to_file=to_file) # Initialize a new directed graph graph = graphviz.Digraph(feature.get_name(), format=format_, graph_attr={'rankdir': 'LR'}) dataframes = {} edges = ([], []) primitives = [] groupbys = [] _, max_depth = get_feature_data(feature, dataframes, groupbys, edges, primitives, layer=0) dataframes[feature.dataframe_name]['targets'].add(feature.get_name()) for df_name in dataframes: dataframe_name = '\u2605 {} (target)'.format(df_name) if df_name == feature.dataframe_name else df_name dataframe_table = get_dataframe_table(dataframe_name, dataframes[df_name]) graph.attr('node', shape='plaintext') graph.node(df_name, dataframe_table) graph.attr('node', shape='diamond') num_primitives = len(primitives) for prim_name, prim_label, layer, prim_type in primitives: step_num = max_depth - layer if num_primitives == 1: type_str = '<FONT POINT-SIZE="12"><B>{}</B><BR></BR></FONT>'.format(prim_type) if prim_type else '' prim_label = '<{}{}>'.format(type_str, prim_label) else: step = 'Step {}'.format(step_num) type_str = ' ' + prim_type if prim_type else '' prim_label = '<<FONT POINT-SIZE="12"><B>{}:</B>{}<BR></BR></FONT>{}>'.format(step, type_str, prim_label) # sink first layer transform primitive if multiple primitives if step_num == 1 and prim_type == 'Transform' and num_primitives > 1: with graph.subgraph() as init_transform: init_transform.attr(rank='min') init_transform.node(name=prim_name, label=prim_label) else: graph.node(name=prim_name, label=prim_label) graph.attr('node', shape='box') for groupby_name, groupby_label in groupbys: graph.node(name=groupby_name, label=groupby_label) graph.attr('edge', style='solid', dir='forward') for edge in edges[1]: graph.edge(*edge) graph.attr('edge', style='dotted', arrowhead='none', dir='forward') for edge in edges[0]: graph.edge(*edge) if description is True: graph.attr(label=describe_feature(feature, **kwargs)) elif description is not False: graph.attr(label=description) if to_file: save_graph(graph, to_file, format_) return graph
def get_feature_data(feat, dataframes, groupbys, edges, primitives, layer=0): # 1) add feature to dataframes tables: feat_name = feat.get_name() if feat.dataframe_name not in dataframes: add_dataframe(feat.dataframe, dataframes) dataframe_dict = dataframes[feat.dataframe_name] # if we've already explored this feat, continue feat_node = "{}:{}".format(feat.dataframe_name, feat_name) if feat_name in dataframe_dict['columns'] or feat_name in dataframe_dict['feats']: return feat_node, layer if isinstance(feat, IdentityFeature): dataframe_dict['columns'].add(feat_name) else: dataframe_dict['feats'].add(feat_name) base_node = feat_node # 2) if multi-output, convert feature to generic base if isinstance(feat, FeatureOutputSlice): feat = feat.base_feature feat_name = feat.get_name() # 3) add primitive node if feat.primitive.name or isinstance(feat, DirectFeature): prim_name = feat.primitive.name if feat.primitive.name else 'join' prim_type = '' if isinstance(feat, AggregationFeature): prim_type = 'Aggregation' elif isinstance(feat, TransformFeature): prim_type = 'Transform' primitive_node = "{}_{}_{}".format(layer, feat_name, prim_name) primitives.append((primitive_node, prim_name.upper(), layer, prim_type)) edges[1].append([primitive_node, base_node]) base_node = primitive_node # 4) add groupby/join edges and nodes dependencies = [(dep.hash(), dep) for dep in feat.get_dependencies()] for is_forward, r in feat.relationship_path: if is_forward: if r.child_dataframe.ww.name not in dataframes: add_dataframe(r.child_dataframe, dataframes) dataframes[r.child_dataframe.ww.name]['columns'].add(r._child_column_name) child_node = '{}:{}'.format(r.child_dataframe.ww.name, r._child_column_name) edges[0].append([base_node, child_node]) else: if r.child_dataframe.ww.name not in dataframes: add_dataframe(r.child_dataframe, dataframes) dataframes[r.child_dataframe.ww.name]['columns'].add(r._child_column_name) child_node = '{}:{}'.format(r.child_dataframe.ww.name, r._child_column_name) child_name = child_node.replace(':', '--') groupby_node = "{}_groupby_{}".format(feat_name, child_name) groupby_name = 'group by\n{}'.format(r._child_column_name) groupbys.append((groupby_node, groupby_name)) edges[0].append([child_node, groupby_node]) edges[1].append([groupby_node, base_node]) base_node = groupby_node if hasattr(feat, 'groupby'): groupby = feat.groupby _ = get_feature_data(groupby, dataframes, groupbys, edges, primitives, layer + 1) dependencies.remove((groupby.hash(), groupby)) groupby_name = groupby.get_name() if isinstance(groupby, IdentityFeature): dataframes[groupby.dataframe_name]['columns'].add(groupby_name) else: dataframes[groupby.dataframe_name]['feats'].add(groupby_name) child_node = '{}:{}'.format(groupby.dataframe_name, groupby_name) child_name = child_node.replace(':', '--') groupby_node = "{}_groupby_{}".format(feat_name, child_name) groupby_name = 'group by\n{}'.format(groupby_name) groupbys.append((groupby_node, groupby_name)) edges[0].append([child_node, groupby_node]) edges[1].append([groupby_node, base_node]) base_node = groupby_node # 5) recurse over dependents max_depth = layer for _, f in dependencies: dependent_node, depth = get_feature_data(f, dataframes, groupbys, edges, primitives, layer + 1) edges[1].append([dependent_node, base_node]) max_depth = max(depth, max_depth) return feat_node, max_depth def add_dataframe(dataframe, dataframe_dict): dataframe_dict[dataframe.ww.name] = { 'index': dataframe.ww.index, 'targets': set(), 'columns': set(), 'feats': set() } def get_dataframe_table(dataframe_name, dataframe_dict): ''' given a dict of columns and feats, construct the html table for it ''' index = dataframe_dict['index'] targets = dataframe_dict['targets'] columns = dataframe_dict['columns'].difference(targets) feats = dataframe_dict['feats'].difference(targets) # If the index is used, make sure it's the first element in the table clean_index = html.escape(index) if index in columns: rows = [COL_TEMPLATE.format(clean_index, clean_index + " (index)")] columns.discard(index) elif index in targets: rows = [TARGET_TEMPLATE.format(clean_index, clean_index + " (index)")] targets.discard(index) else: rows = [] for col in list(columns) + list(feats) + list(targets): template = COL_TEMPLATE if col in targets: template = TARGET_TEMPLATE col = html.escape(col) rows.append(template.format(col, col)) table = TABLE_TEMPLATE.format(dataframe_name=dataframe_name, table_cols="\n".join(rows)) return table