Source code for featuretools.primitives.standard.datetime_transform_primitives

import warnings

import holidays
import numpy as np
import pandas as pd
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import (
    AgeFractional,
    BooleanNullable,
    Categorical,
    Datetime,
    Ordinal
)

from featuretools.primitives.base import TransformPrimitive
from featuretools.primitives.utils import HolidayUtil
from featuretools.utils import convert_time_units
from featuretools.utils.gen_utils import Library


class Age(TransformPrimitive):
    """Calculates the age in years as a floating point number given a
       date of birth.

    Description:
        Age in years is computed by calculating the number of days between
        the date of birth and the reference time and dividing the result
        by 365.

    Examples:
        Determine the age of three people as of Jan 1, 2019
        >>> import pandas as pd
        >>> reference_date = pd.to_datetime("01-01-2019")
        >>> age = Age()
        >>> input_ages = [pd.to_datetime("01-01-2000"),
        ...               pd.to_datetime("05-30-1983"),
        ...               pd.to_datetime("10-17-1997")]
        >>> age(input_ages, time=reference_date).tolist()
        [19.013698630136986, 35.61643835616438, 21.221917808219178]
    """
    name = "age"
    input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'date_of_birth'})]
    return_type = ColumnSchema(logical_type=AgeFractional, semantic_tags={'numeric'})
    uses_calc_time = True
    compatibility = [Library.PANDAS, Library.DASK]
    description_template = "the age from {}"

    def get_function(self):
        def age(x, time=None):
            return (time - x).dt.days / 365
        return age


class DateToHoliday(TransformPrimitive):
    """Transforms time of an instance into the holiday name, if there is one.

    Description:
        If there is no holiday, it returns `NaN`. Currently only works for the
        United States and Canada with dates between 1950 and 2100.

    Args:
        country (str): Country to use for determining Holidays.
            Default is 'US'. Should be one of the available countries here:
            https://github.com/dr-prodigy/python-holidays#available-countries

    Examples:
        >>> from datetime import datetime
        >>> date_to_holiday = DateToHoliday()
        >>> dates = pd.Series([datetime(2016, 1, 1),
        ...          datetime(2016, 2, 27),
        ...          datetime(2017, 5, 29, 10, 30, 5),
        ...          datetime(2018, 7, 4)])
        >>> date_to_holiday(dates).tolist()
        ["New Year's Day", nan, 'Memorial Day', 'Independence Day']

        We can also change the country.

        >>> date_to_holiday_canada = DateToHoliday(country='Canada')
        >>> dates = pd.Series([datetime(2016, 7, 1),
        ...          datetime(2016, 11, 15),
        ...          datetime(2017, 12, 26),
        ...          datetime(2018, 9, 3)])
        >>> date_to_holiday_canada(dates).tolist()
        ['Canada Day', nan, 'Boxing Day', 'Labour Day']
    """
    name = "date_to_holiday"
    input_types = [ColumnSchema(logical_type=Datetime)]
    return_type = ColumnSchema(logical_type=Categorical, semantic_tags={'category'})

    def __init__(self, country='US'):
        self.country = country
        self.holidayUtil = HolidayUtil(country)

    def get_function(self):
        def date_to_holiday(x):
            holiday_df = self.holidayUtil.to_df()
            df = pd.DataFrame({'date': x})
            df.date = df.date.dt.normalize().astype('datetime64')

            df = df.merge(holiday_df, how='left', left_on='date', right_on='holiday_date')
            return df.names.values
        return date_to_holiday


[docs]class Day(TransformPrimitive): """Determines the day of the month from a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 3, 3), ... datetime(2019, 3, 31)] >>> day = Day() >>> day(dates).tolist() [1, 3, 31] """ name = "day" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(1, 32))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the day of the month of {}" def get_function(self): def day(vals): return vals.dt.day return day
class DistanceToHoliday(TransformPrimitive): """Computes the number of days before or after a given holiday. Description: For a list of dates, return the distance from the nearest occurrence of a chosen holiday. The distance is returned in days. If the closest occurrence is prior to the date given, return a negative number. If a date is missing, return `NaN`. Currently only works with dates between 1950 and 2100. Args: holiday (str): Name of the holiday. Defaults to New Year's Day. country (str): Specifies which country's calendar to use for the given holiday. Default is `US`. Examples: >>> from datetime import datetime >>> distance_to_holiday = DistanceToHoliday("New Year's Day") >>> dates = [datetime(2010, 1, 1), ... datetime(2012, 5, 31), ... datetime(2017, 7, 31), ... datetime(2020, 12, 31)] >>> distance_to_holiday(dates).tolist() [0, -151, 154, 1] We can also control the country in which we're searching for a holiday. >>> distance_to_holiday = DistanceToHoliday("Victoria Day", country='Canada') >>> dates = [datetime(2010, 1, 1), ... datetime(2012, 5, 31), ... datetime(2017, 7, 31), ... datetime(2020, 12, 31)] >>> distance_to_holiday(dates).tolist() [143, -10, -70, 144] """ name = "distance_to_holiday" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(semantic_tags={'numeric'}) default_value = 0 def __init__(self, holiday="New Year's Day", country="US"): self.country = country self.holiday = holiday self.holidayUtil = HolidayUtil(country) available_holidays = list(set(self.holidayUtil.federal_holidays.values())) if self.holiday not in available_holidays: error = 'must be one of the available holidays:\n%s' % available_holidays raise ValueError(error) def get_function(self): def distance_to_holiday(x): holiday_df = self.holidayUtil.to_df() holiday_df = holiday_df[holiday_df.names == self.holiday] df = pd.DataFrame({'date': x}) df['x_index'] = df.index # store original index as a column df = df.dropna() df = df.sort_values('date') df.date = df.date.dt.normalize() matches = pd.merge_asof(df, holiday_df, left_on='date', right_on='holiday_date', direction='nearest', tolerance=pd.Timedelta('365d')) matches = matches.set_index('x_index') matches['days_diff'] = (matches.holiday_date - matches.date).dt.days return matches.days_diff.reindex_like(x) return distance_to_holiday
[docs]class Hour(TransformPrimitive): """Determines the hour value of a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 3, 3, 11, 10, 50), ... datetime(2019, 3, 31, 19, 45, 15)] >>> hour = Hour() >>> hour(dates).tolist() [0, 11, 19] """ name = "hour" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(24))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = 'the hour value of {}' def get_function(self): def hour(vals): return vals.dt.hour return hour
[docs]class IsWeekend(TransformPrimitive): """Determines if a date falls on a weekend. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 6, 17, 11, 10, 50), ... datetime(2019, 11, 30, 19, 45, 15)] >>> is_weekend = IsWeekend() >>> is_weekend(dates).tolist() [False, False, True] """ name = "is_weekend" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=BooleanNullable) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "whether {} occurred on a weekend" def get_function(self): def is_weekend(vals): return vals.dt.weekday > 4 return is_weekend
[docs]class Minute(TransformPrimitive): """Determines the minutes value of a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 3, 3, 11, 10, 50), ... datetime(2019, 3, 31, 19, 45, 15)] >>> minute = Minute() >>> minute(dates).tolist() [0, 10, 45] """ name = "minute" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(60))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the minutes value of {}" def get_function(self): def minute(vals): return vals.dt.minute return minute
[docs]class Month(TransformPrimitive): """Determines the month value of a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 6, 17, 11, 10, 50), ... datetime(2019, 11, 30, 19, 45, 15)] >>> month = Month() >>> month(dates).tolist() [3, 6, 11] """ name = "month" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(1, 13))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the month of {}" def get_function(self): def month(vals): return vals.dt.month return month
[docs]class Second(TransformPrimitive): """Determines the seconds value of a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 3, 3, 11, 10, 50), ... datetime(2019, 3, 31, 19, 45, 15)] >>> second = Second() >>> second(dates).tolist() [0, 50, 15] """ name = "second" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(60))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the seconds value of {}" def get_function(self): def second(vals): return vals.dt.second return second
[docs]class TimeSince(TransformPrimitive): """Calculates time from a value to a specified cutoff datetime. Args: unit (str): Defines the unit of time to count from. Defaults to Seconds. Acceptable values: years, months, days, hours, minutes, seconds, milliseconds, nanoseconds Examples: >>> from datetime import datetime >>> time_since = TimeSince() >>> times = [datetime(2019, 3, 1, 0, 0, 0, 1), ... datetime(2019, 3, 1, 0, 0, 1, 0), ... datetime(2019, 3, 1, 0, 2, 0, 0)] >>> cutoff_time = datetime(2019, 3, 1, 0, 0, 0, 0) >>> values = time_since(times, time=cutoff_time) >>> list(map(int, values)) [0, -1, -120] Change output to nanoseconds >>> from datetime import datetime >>> time_since_nano = TimeSince(unit='nanoseconds') >>> times = [datetime(2019, 3, 1, 0, 0, 0, 1), ... datetime(2019, 3, 1, 0, 0, 1, 0), ... datetime(2019, 3, 1, 0, 2, 0, 0)] >>> cutoff_time = datetime(2019, 3, 1, 0, 0, 0, 0) >>> values = time_since_nano(times, time=cutoff_time) >>> list(map(lambda x: int(round(x)), values)) [-1000, -1000000000, -120000000000] """ name = 'time_since' input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(semantic_tags={'numeric'}) uses_calc_time = True compatibility = [Library.PANDAS, Library.DASK] description_template = "the time from {} to the cutoff time"
[docs] def __init__(self, unit="seconds"): self.unit = unit.lower()
def get_function(self): def pd_time_since(array, time): return convert_time_units((time - array).dt.total_seconds(), self.unit) return pd_time_since
[docs]class TimeSincePrevious(TransformPrimitive): """Compute the time since the previous entry in a list. Args: unit (str): Defines the unit of time to count from. Defaults to Seconds. Acceptable values: years, months, days, hours, minutes, seconds, milliseconds, nanoseconds Description: Given a list of datetimes, compute the time in seconds elapsed since the previous item in the list. The result for the first item in the list will always be `NaN`. Examples: >>> from datetime import datetime >>> time_since_previous = TimeSincePrevious() >>> dates = [datetime(2019, 3, 1, 0, 0, 0), ... datetime(2019, 3, 1, 0, 2, 0), ... datetime(2019, 3, 1, 0, 3, 0), ... datetime(2019, 3, 1, 0, 2, 30), ... datetime(2019, 3, 1, 0, 10, 0)] >>> time_since_previous(dates).tolist() [nan, 120.0, 60.0, -30.0, 450.0] """ name = "time_since_previous" input_types = [ColumnSchema(logical_type=Datetime, semantic_tags={'time_index'})] return_type = ColumnSchema(semantic_tags={'numeric'}) description_template = "the time since the previous instance of {}"
[docs] def __init__(self, unit="seconds"): self.unit = unit.lower()
def get_function(self): def pd_diff(values): return convert_time_units(values.diff().apply(lambda x: x.total_seconds()), self.unit) return pd_diff
[docs]class Week(TransformPrimitive): """Determines the week of the year from a datetime. Description: Returns the week of the year from a datetime value. The first week of the year starts on January 1, and week numbers increment each Monday. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 1, 3), ... datetime(2019, 6, 17, 11, 10, 50), ... datetime(2019, 11, 30, 19, 45, 15)] >>> week = Week() >>> week(dates).tolist() [1, 25, 48] """ name = "week" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(1, 54))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the week of the year of {}" def get_function(self): def week(vals): warnings.filterwarnings("ignore", message=("Series.dt.weekofyear and Series.dt.week " "have been deprecated."), module="featuretools" ) return vals.dt.week return week
[docs]class Weekday(TransformPrimitive): """Determines the day of the week from a datetime. Description: Returns the day of the week from a datetime value. Weeks start on Monday (day 0) and run through Sunday (day 6). Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2019, 6, 17, 11, 10, 50), ... datetime(2019, 11, 30, 19, 45, 15)] >>> weekday = Weekday() >>> weekday(dates).tolist() [4, 0, 5] """ name = "weekday" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(7))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the day of the week of {}" def get_function(self): def weekday(vals): return vals.dt.weekday return weekday
[docs]class Year(TransformPrimitive): """Determines the year value of a datetime. Examples: >>> from datetime import datetime >>> dates = [datetime(2019, 3, 1), ... datetime(2048, 6, 17, 11, 10, 50), ... datetime(1950, 11, 30, 19, 45, 15)] >>> year = Year() >>> year(dates).tolist() [2019, 2048, 1950] """ name = "year" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=Ordinal(order=list(range(1, 3000))), semantic_tags={'category'}) compatibility = [Library.PANDAS, Library.DASK, Library.KOALAS] description_template = "the year of {}" def get_function(self): def year(vals): return vals.dt.year return year
class IsFederalHoliday(TransformPrimitive): """Determines if a given datetime is a federal holiday. Description: This primtive currently only works for the United States and Canada with dates between 1950 and 2100. Args: country (str): Country to use for determining Holidays. Default is 'US'. Should be one of the available countries here: https://github.com/dr-prodigy/python-holidays#available-countries Examples: >>> from datetime import datetime >>> is_federal_holiday = IsFederalHoliday(country="US") >>> is_federal_holiday([ ... datetime(2019, 7, 4, 10, 0, 30), ... datetime(2019, 2, 26)]).tolist() [True, False] """ name = "is_federal_holiday" input_types = [ColumnSchema(logical_type=Datetime)] return_type = ColumnSchema(logical_type=BooleanNullable) def __init__(self, country='US'): self.country = country try: self.holidays = holidays.country_holidays(country=self.country) except NotImplementedError: available_countries = 'https://github.com/dr-prodigy/python-holidays#available-countries' error = 'must be one of the available countries:\n%s' % available_countries raise ValueError(error) years_list = [1950 + x for x in range(150)] self.federal_holidays = getattr(holidays, country)(years=years_list) def get_function(self): def is_federal_holiday(x): holidays_df = pd.DataFrame(sorted(self.federal_holidays.items()), columns=['dates', 'names']) is_holiday = x.dt.normalize().isin(holidays_df.dates) if x.isnull().values.any(): is_holiday = is_holiday.astype('object') is_holiday[x.isnull()] = np.nan return is_holiday.values return is_federal_holiday