nlp_primitives.UniversalSentenceEncoder¶
- class nlp_primitives.UniversalSentenceEncoder[source]¶
- Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2) - Parameters
- None – 
 - Examples - >>> sentences = ["I like to eat pizza", "The roller coaster was built in 1885.", ""] >>> # universal_sentence_encoder = UniversalSentenceEncoder() # normal syntax >>> output = universal_sentence_encoder(sentences) # defined in test file >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089] - Methods - __init__()- generate_name(base_feature_names)- generate_names(base_feature_names)- get_args_string()- get_arguments()- get_description(input_column_descriptions[, ...])- get_filepath(filename)- get_function()- Attributes - base_of- base_of_exclude- commutative- compatibility- Additional compatible libraries - default_value- Default value this feature returns if no data found. - description_template- input_types- woodwork.ColumnSchema types of inputs - max_stack_depth- name- Name of the primitive - number_output_features- Number of columns in feature matrix associated with this feature - return_type- ColumnSchema type of return - uses_calc_time- uses_full_dataframe