import math
import re
import pandas as pd
from tqdm import tqdm
from woodwork.logical_types import Boolean, Categorical, Ordinal
import featuretools as ft
[docs]def load_flight(
    month_filter=None,
    categorical_filter=None,
    nrows=None,
    demo=True,
    return_single_table=False,
    verbose=False,
):
    """
    Download, clean, and filter flight data from 2017.
    The original dataset can be found `here <https://www.transtats.bts.gov/ot_delay/ot_delaycause1.asp>`_.
    Args:
        month_filter (list[int]): Only use data from these months (example is ``[1, 2]``).
            To skip, set to None.
        categorical_filter (dict[str->str]): Use only specified categorical values.
            Example is ``{'dest_city': ['Boston, MA'], 'origin_city': ['Boston, MA']}``
            which returns all flights in OR out of Boston. To skip, set to None.
        nrows (int): Passed to nrows in ``pd.read_csv``. Used before filtering.
        demo (bool): Use only two months of data. If False, use the whole year.
        return_single_table (bool): Exit the function early and return a dataframe.
        verbose (bool): Show a progress bar while loading the data.
    Examples:
        .. ipython::
            :verbatim:
            In [1]: import featuretools as ft
            In [2]: es = ft.demo.load_flight(verbose=True,
               ...:                          month_filter=[1],
               ...:                          categorical_filter={'origin_city':['Boston, MA']})
            100%|xxxxxxxxxxxxxxxxxxxxxxxxx| 100/100 [01:16<00:00,  1.31it/s]
            In [3]: es
            Out[3]:
            Entityset: Flight Data
              DataFrames:
                airports [Rows: 55, Columns: 3]
                flights [Rows: 613, Columns: 9]
                trip_logs [Rows: 9456, Columns: 22]
                airlines [Rows: 10, Columns: 1]
              Relationships:
                trip_logs.flight_id -> flights.flight_id
                flights.carrier -> airlines.carrier
                flights.dest -> airports.dest
    """
    filename, csv_length = get_flight_filename(demo=demo)
    print("Downloading data ...")
    url = "https://api.featurelabs.com/datasets/{}?library=featuretools&version={}".format(
        filename, ft.__version__
    )
    chunksize = math.ceil(csv_length / 99)
    pd.options.display.max_columns = 200
    iter_csv = pd.read_csv(
        url, compression="zip", iterator=True, nrows=nrows, chunksize=chunksize
    )
    if verbose:
        iter_csv = tqdm(iter_csv, total=100)
    partial_df_list = []
    for chunk in iter_csv:
        df = filter_data(
            _clean_data(chunk),
            month_filter=month_filter,
            categorical_filter=categorical_filter,
        )
        partial_df_list.append(df)
    data = pd.concat(partial_df_list)
    if return_single_table:
        return data
    es = make_es(data)
    return es 
def make_es(data):
    es = ft.EntitySet("Flight Data")
    arr_time_columns = [
        "arr_delay",
        "dep_delay",
        "carrier_delay",
        "weather_delay",
        "national_airspace_delay",
        "security_delay",
        "late_aircraft_delay",
        "canceled",
        "diverted",
        "taxi_in",
        "taxi_out",
        "air_time",
        "dep_time",
    ]
    logical_types = {
        "flight_num": Categorical,
        "distance_group": Ordinal(order=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]),
        "canceled": Boolean,
        "diverted": Boolean,
    }
    es.add_dataframe(
        data,
        dataframe_name="trip_logs",
        index="trip_log_id",
        make_index=True,
        time_index="date_scheduled",
        secondary_time_index={"arr_time": arr_time_columns},
        logical_types=logical_types,
    )
    es.normalize_dataframe(
        "trip_logs",
        "flights",
        "flight_id",
        additional_columns=[
            "origin",
            "origin_city",
            "origin_state",
            "dest",
            "dest_city",
            "dest_state",
            "distance_group",
            "carrier",
            "flight_num",
        ],
    )
    es.normalize_dataframe("flights", "airlines", "carrier", make_time_index=False)
    es.normalize_dataframe(
        "flights",
        "airports",
        "dest",
        additional_columns=["dest_city", "dest_state"],
        make_time_index=False,
    )
    return es
def _clean_data(data):
    # Make column names snake case
    clean_data = data.rename(columns={col: convert(col) for col in data})
    # Chance crs -> "scheduled" and other minor clarifications
    clean_data = clean_data.rename(
        columns={
            "crs_arr_time": "scheduled_arr_time",
            "crs_dep_time": "scheduled_dep_time",
            "crs_elapsed_time": "scheduled_elapsed_time",
            "nas_delay": "national_airspace_delay",
            "origin_city_name": "origin_city",
            "dest_city_name": "dest_city",
            "cancelled": "canceled",
        }
    )
    # Combine strings like 0130 (1:30 AM) with dates (2017-01-01)
    clean_data["scheduled_dep_time"] = clean_data["scheduled_dep_time"].apply(
        lambda x: str(x)
    ) + clean_data["flight_date"].astype("str")
    # Parse combined string as a date
    clean_data.loc[:, "scheduled_dep_time"] = pd.to_datetime(
        clean_data["scheduled_dep_time"], format="%H%M%Y-%m-%d", errors="coerce"
    )
    clean_data["scheduled_elapsed_time"] = pd.to_timedelta(
        clean_data["scheduled_elapsed_time"], unit="m"
    )
    clean_data = _reconstruct_times(clean_data)
    # Create a time index 6 months before scheduled_dep
    clean_data.loc[:, "date_scheduled"] = clean_data[
        "scheduled_dep_time"
    ].dt.date - pd.Timedelta("120d")
    # A null entry for a delay means no delay
    clean_data = _fill_labels(clean_data)
    # Nulls for scheduled values are too problematic. Remove them.
    clean_data = clean_data.dropna(
        axis="rows", subset=["scheduled_dep_time", "scheduled_arr_time"]
    )
    # Make a flight id. Define a flight as a combination of:
    # 1. carrier 2. flight number 3. origin airport 4. dest airport
    clean_data.loc[:, "flight_id"] = (
        clean_data["carrier"]
        + "-"
        + clean_data["flight_num"].apply(lambda x: str(x))
        + ":"
        + clean_data["origin"]
        + "->"
        + clean_data["dest"]
    )
    column_order = [
        "flight_id",
        "flight_num",
        "date_scheduled",
        "scheduled_dep_time",
        "scheduled_arr_time",
        "carrier",
        "origin",
        "origin_city",
        "origin_state",
        "dest",
        "dest_city",
        "dest_state",
        "distance_group",
        "dep_time",
        "arr_time",
        "dep_delay",
        "taxi_out",
        "taxi_in",
        "arr_delay",
        "diverted",
        "scheduled_elapsed_time",
        "air_time",
        "distance",
        "carrier_delay",
        "weather_delay",
        "national_airspace_delay",
        "security_delay",
        "late_aircraft_delay",
        "canceled",
    ]
    clean_data = clean_data[column_order]
    return clean_data
def _fill_labels(clean_data):
    labely_columns = [
        "arr_delay",
        "dep_delay",
        "carrier_delay",
        "weather_delay",
        "national_airspace_delay",
        "security_delay",
        "late_aircraft_delay",
        "canceled",
        "diverted",
        "taxi_in",
        "taxi_out",
        "air_time",
    ]
    for col in labely_columns:
        clean_data.loc[:, col] = clean_data[col].fillna(0)
    return clean_data
def _reconstruct_times(clean_data):
    """Reconstruct departure_time, scheduled_dep_time,
    arrival_time and scheduled_arr_time by adding known delays
    to known times. We do:
        - dep_time is scheduled_dep + dep_delay
        - arr_time is dep_time + taxiing and air_time
        - scheduled arrival is scheduled_dep + scheduled_elapsed
    """
    clean_data.loc[:, "dep_time"] = clean_data["scheduled_dep_time"] + pd.to_timedelta(
        clean_data["dep_delay"], unit="m"
    )
    clean_data.loc[:, "arr_time"] = clean_data["dep_time"] + pd.to_timedelta(
        clean_data["taxi_out"] + clean_data["air_time"] + clean_data["taxi_in"],
        unit="m",
    )
    clean_data.loc[:, "scheduled_arr_time"] = (
        clean_data["scheduled_dep_time"] + clean_data["scheduled_elapsed_time"]
    )
    return clean_data
def filter_data(clean_data, month_filter=None, categorical_filter=None):
    if month_filter is not None:
        tmp = clean_data["scheduled_dep_time"].dt.month.isin(month_filter)
        clean_data = clean_data[tmp]
    if categorical_filter is not None:
        tmp = False
        for key, values in categorical_filter.items():
            tmp = tmp | clean_data[key].isin(values)
        clean_data = clean_data[tmp]
    return clean_data
def convert(name):
    # Rename columns to underscore
    # Code via SO https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case
    s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
    return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower()
def get_flight_filename(demo=True):
    if demo:
        filename = SMALL_FLIGHT_CSV
        rows = 860457
    else:
        filename = BIG_FLIGHT_CSV
        rows = 5162742
    return filename, rows
SMALL_FLIGHT_CSV = "data_2017_jan_feb.csv.zip"
BIG_FLIGHT_CSV = "data_all_2017.csv.zip"