nlp_primitives.LSA¶
- class nlp_primitives.LSA(random_seed=0)[source]¶
Calculates the Latent Semantic Analysis Values of NaturalLanguage Input
- Description:
Given a list of strings, transforms those strings using tf-idf and single value decomposition to go from a sparse matrix to a compact matrix with two values for each string. These values represent that Latent Semantic Analysis of each string. These values will represent their context with respect to (nltk’s gutenberg corpus.)[https://www.nltk.org/book/ch02.html#gutenberg-corpus]
If a string is missing, return NaN.
Examples
>>> lsa = LSA() >>> x = ["he helped her walk,", "me me me eat food", "the sentence doth long"] >>> res = lsa(x).tolist() >>> for i in range(len(res)): res[i] = [abs(round(x, 2)) for x in res[i]] >>> res [[0.01, 0.01, 0.01], [0.0, 0.0, 0.01]]
Now, if we change the values of the input corpus, to something that better resembles the given text, the same given input text will result in a different, more discerning, output. Also, NaN values are handled, as well as strings without words.
>>> lsa = LSA() >>> x = ["the earth is round", "", np.NaN, ".,/"] >>> res = lsa(x).tolist() >>> for i in range(len(res)): res[i] = [abs(round(x, 2)) for x in res[i]] >>> res [[0.02, 0.0, nan, 0.0], [0.02, 0.0, nan, 0.0]]
Methods
__init__
([random_seed])generate_name
(base_feature_names)generate_names
(base_feature_names)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
compatibility
Additional compatible libraries
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
uses_calc_time
uses_full_dataframe