Source code for featuretools.primitives.standard.aggregation.min_count

import numpy as np
from woodwork.column_schema import ColumnSchema
from woodwork.logical_types import IntegerNullable

from featuretools.primitives.base import AggregationPrimitive


[docs]class MinCount(AggregationPrimitive): """Calculates the number of occurrences of the min value in a list Args: skipna (bool): Determines if to use NA/null values. Defaults to True to skip NA/null. If skipna is False, and there are NaN values in the array, the min will be NaN regardless of the other values, and NaN will be returned. Examples: >>> min_count = MinCount() >>> min_count([1, 2, 5, 1, 5, 3, 5]) 2 You can optionally specify how to handle NaN values >>> min_count_skipna = MinCount(skipna=False) >>> min_count_skipna([1, 2, 5, 1, 5, 3, None]) nan """ name = "min_count" input_types = [ColumnSchema(semantic_tags={"numeric"})] return_type = ColumnSchema(logical_type=IntegerNullable, semantic_tags={"numeric"})
[docs] def __init__(self, skipna=True): self.skipna = skipna
def get_function(self): def min_count(x): xmin = x.min(skipna=self.skipna) if np.isnan(xmin): return np.nan return x.eq(xmin).sum() return min_count