featuretools.primitives.MinCount#
- class featuretools.primitives.MinCount(skipna=True)[source]#
Calculates the number of occurrences of the min value in a list
- Parameters:
skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null. If skipna is False, and there are NaN values in the array, the min will be NaN regardless of the other values, and NaN will be returned.
Examples
>>> min_count = MinCount() >>> min_count([1, 2, 5, 1, 5, 3, 5]) 2
You can optionally specify how to handle NaN values
>>> min_count_skipna = MinCount(skipna=False) >>> min_count_skipna([1, 2, 5, 1, 5, 3, None]) nan
Methods
__init__([skipna])flatten_nested_input_types(input_types)Flattens nested column schema inputs into a single list.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_time