featuretools.primitives.NMostCommonFrequency#
- class featuretools.primitives.NMostCommonFrequency(n=3, skipna=True)[source]#
Determines the frequency of the n most common items.
- Parameters:
n (int) – defines “n” in “n most common”. Defaults to 3.
skipna (bool) – Determines if to use NA/null values. Defaults to True to skip NA/null.
- Description:
Given a list, find the n most common items, and return a series showing the frequency of each item. If the list has less than n unique values, the resulting series will be padded with nan.
Examples
>>> n_most_common_frequency = NMostCommonFrequency() >>> n_most_common_frequency([1, 1, 1, 2, 2, 3, 4, 4]).to_list() [3, 2, 2]
We can increase n to include more items.
>>> n_most_common_frequency = NMostCommonFrequency(4) >>> n_most_common_frequency([1, 1, 1, 2, 2, 3, 4, 4]).to_list() [3, 2, 2, 1]
NaNs are skipped by default.
>>> n_most_common_frequency = NMostCommonFrequency(3) >>> n_most_common_frequency([1, 1, 1, 2, 2, 3, 4, 4, None, None, None]).to_list() [3, 2, 2]
However, the way NaNs are treated can be controlled.
>>> n_most_common_frequency = NMostCommonFrequency(3, skipna=False) >>> n_most_common_frequency([1, 1, 1, 2, 2, 3, 4, 4, None, None, None]).to_list() [3, 3, 2]
Methods
__init__
([n, skipna])flatten_nested_input_types
(input_types)Flattens nested column schema inputs into a single list.
generate_name
(base_feature_names, ...)generate_names
(base_feature_names, ...)get_args_string
()get_arguments
()get_description
(input_column_descriptions[, ...])get_filepath
(filename)get_function
()Attributes
base_of
base_of_exclude
commutative
default_value
Default value this feature returns if no data found.
description_template
input_types
woodwork.ColumnSchema types of inputs
max_stack_depth
name
Name of the primitive
number_output_features
Number of columns in feature matrix associated with this feature
return_type
ColumnSchema type of return
stack_on
stack_on_exclude
stack_on_self
uses_calc_time