Source code for featuretools.computational_backends.calculate_feature_matrix

import logging
import math
import os
import shutil
import time
import warnings
from datetime import datetime

import cloudpickle
import numpy as np
import pandas as pd

from featuretools.computational_backends.feature_set import FeatureSet
from featuretools.computational_backends.feature_set_calculator import (
    FeatureSetCalculator
)
from featuretools.computational_backends.utils import (
    bin_cutoff_times,
    create_client_and_cluster,
    gather_approximate_features,
    gen_empty_approx_features_df,
    save_csv_decorator
)
from featuretools.entityset.relationship import RelationshipPath
from featuretools.feature_base import AggregationFeature, FeatureBase
from featuretools.utils import Trie
from featuretools.utils.gen_utils import make_tqdm_iterator
from featuretools.utils.wrangle import _check_time_type
from featuretools.variable_types import (
    DatetimeTimeIndex,
    NumericTimeIndex,
    PandasTypes
)

logger = logging.getLogger('featuretools.computational_backend')

PBAR_FORMAT = "Elapsed: {elapsed} | Progress: {l_bar}{bar}"
FEATURE_CALCULATION_PERCENTAGE = .95  # make total 5% higher to allot time for wrapping up at end


[docs]def calculate_feature_matrix(features, entityset=None, cutoff_time=None, instance_ids=None, entities=None, relationships=None, cutoff_time_in_index=False, training_window=None, approximate=None, save_progress=None, verbose=False, chunk_size=None, n_jobs=1, dask_kwargs=None, progress_callback=None): """Calculates a matrix for a given set of instance ids and calculation times. Args: features (list[:class:`.FeatureBase`]): Feature definitions to be calculated. entityset (EntitySet): An already initialized entityset. Required if `entities` and `relationships` not provided cutoff_time (pd.DataFrame or Datetime): Specifies at which time to calculate the features for each instance. The resulting feature matrix will use data up to and including the cutoff_time. Can either be a DataFrame with 'instance_id' and 'time' columns, DataFrame with the name of the index variable in the target entity and a time column, or a single value to calculate for all instances. If the dataframe has more than two columns, any additional columns will be added to the resulting feature matrix. instance_ids (list): List of instances to calculate features on. Only used if cutoff_time is a single datetime. entities (dict[str -> tuple(pd.DataFrame, str, str)]): dictionary of entities. Entries take the format {entity id: (dataframe, id column, (time_column))}. relationships (list[(str, str, str, str)]): list of relationships between entities. List items are a tuple with the format (parent entity id, parent variable, child entity id, child variable). cutoff_time_in_index (bool): If True, return a DataFrame with a MultiIndex where the second index is the cutoff time (first is instance id). DataFrame will be sorted by (time, instance_id). training_window (Timedelta or str, optional): Window defining how much time before the cutoff time data can be used when calculating features. If ``None``, all data before cutoff time is used. Defaults to ``None``. approximate (Timedelta or str): Frequency to group instances with similar cutoff times by for features with costly calculations. For example, if bucket is 24 hours, all instances with cutoff times on the same day will use the same calculation for expensive features. verbose (bool, optional): Print progress info. The time granularity is per chunk. chunk_size (int or float or None): maximum number of rows of output feature matrix to calculate at time. If passed an integer greater than 0, will try to use that many rows per chunk. If passed a float value between 0 and 1 sets the chunk size to that percentage of all rows. if None, and n_jobs > 1 it will be set to 1/n_jobs n_jobs (int, optional): number of parallel processes to use when calculating feature matrix. dask_kwargs (dict, optional): Dictionary of keyword arguments to be passed when creating the dask client and scheduler. Even if n_jobs is not set, using `dask_kwargs` will enable multiprocessing. Main parameters: cluster (str or dask.distributed.LocalCluster): cluster or address of cluster to send tasks to. If unspecified, a cluster will be created. diagnostics port (int): port number to use for web dashboard. If left unspecified, web interface will not be enabled. Valid keyword arguments for LocalCluster will also be accepted. save_progress (str, optional): path to save intermediate computational results. progress_callback (callable): function to be called with incremental progress updates. Has the following parameters: update: percentage change (float between 0 and 100) in progress since last call progress_percent: percentage (float between 0 and 100) of total computation completed time_elapsed: total time in seconds that has elapsed since start of call """ assert (isinstance(features, list) and features != [] and all([isinstance(feature, FeatureBase) for feature in features])), \ "features must be a non-empty list of features" # handle loading entityset from featuretools.entityset.entityset import EntitySet if not isinstance(entityset, EntitySet): if entities is not None and relationships is not None: entityset = EntitySet("entityset", entities, relationships) target_entity = entityset[features[0].entity.id] pass_columns = [] if not isinstance(cutoff_time, pd.DataFrame): if isinstance(cutoff_time, list): raise TypeError("cutoff_time must be a single value or DataFrame") if cutoff_time is None: if entityset.time_type == NumericTimeIndex: cutoff_time = np.inf else: cutoff_time = datetime.now() if instance_ids is None: index_var = target_entity.index df = target_entity._handle_time(target_entity.df, time_last=cutoff_time, training_window=training_window) instance_ids = df[index_var].tolist() cutoff_time = [cutoff_time] * len(instance_ids) map_args = [(id, time) for id, time in zip(instance_ids, cutoff_time)] cutoff_time = pd.DataFrame(map_args, columns=['instance_id', 'time']) cutoff_time = cutoff_time.reset_index(drop=True) # handle how columns are names in cutoff_time # maybe add _check_time_dtype helper function if "instance_id" not in cutoff_time.columns: if target_entity.index not in cutoff_time.columns: raise AttributeError('Name of the index variable in the target entity' ' or "instance_id" must be present in cutoff_time') # rename to instance_id cutoff_time.rename(columns={target_entity.index: "instance_id"}, inplace=True) if "time" not in cutoff_time.columns: # take the first column that isn't instance_id and assume it is time not_instance_id = [c for c in cutoff_time.columns if c != "instance_id"] cutoff_time.rename(columns={not_instance_id[0]: "time"}, inplace=True) # Check that cutoff_time time type matches entityset time type if entityset.time_type == NumericTimeIndex: if cutoff_time['time'].dtype.name not in PandasTypes._pandas_numerics: raise TypeError("cutoff_time times must be numeric: try casting " "via pd.to_numeric(cutoff_time['time'])") elif entityset.time_type == DatetimeTimeIndex: if cutoff_time['time'].dtype.name not in PandasTypes._pandas_datetimes: raise TypeError("cutoff_time times must be datetime type: try casting via pd.to_datetime(cutoff_time['time'])") assert (cutoff_time[['instance_id', 'time']].duplicated().sum() == 0), \ "Duplicated rows in cutoff time dataframe." pass_columns = [column_name for column_name in cutoff_time.columns[2:]] if _check_time_type(cutoff_time['time'].iloc[0]) is None: raise ValueError("cutoff_time time values must be datetime or numeric") # make sure dtype of instance_id in cutoff time # is same as column it references target_entity = features[0].entity dtype = entityset[target_entity.id].df[target_entity.index].dtype cutoff_time["instance_id"] = cutoff_time["instance_id"].astype(dtype) feature_set = FeatureSet(features) # Get features to approximate if approximate is not None: approximate_feature_trie = gather_approximate_features(feature_set) # Make a new FeatureSet that ignores approximated features feature_set = FeatureSet(features, approximate_feature_trie=approximate_feature_trie) # Check if there are any non-approximated aggregation features no_unapproximated_aggs = True for feature in features: if isinstance(feature, AggregationFeature): # do not need to check if feature is in to_approximate since # only base features of direct features can be in to_approximate no_unapproximated_aggs = False break if approximate is not None: all_approx_features = {f for _, feats in feature_set.approximate_feature_trie for f in feats} else: all_approx_features = set() deps = feature.get_dependencies(deep=True, ignored=all_approx_features) for dependency in deps: if isinstance(dependency, AggregationFeature): no_unapproximated_aggs = False break cutoff_df_time_var = 'time' target_time = '_original_time' if approximate is not None: # If there are approximated aggs, bin times binned_cutoff_time = bin_cutoff_times(cutoff_time.copy(), approximate) # Think about collisions: what if original time is a feature binned_cutoff_time[target_time] = cutoff_time[cutoff_df_time_var] cutoff_time_to_pass = binned_cutoff_time else: cutoff_time_to_pass = cutoff_time chunk_size = _handle_chunk_size(chunk_size, cutoff_time.shape[0]) tqdm_options = {'total': (cutoff_time.shape[0] / FEATURE_CALCULATION_PERCENTAGE), 'bar_format': PBAR_FORMAT, 'disable': True} if verbose: tqdm_options.update({'disable': False}) elif progress_callback is not None: # allows us to utilize progress_bar updates without printing to anywhere tqdm_options.update({'file': open(os.devnull, 'w'), 'disable': False}) progress_bar = make_tqdm_iterator(**tqdm_options) if n_jobs != 1 or dask_kwargs is not None: feature_matrix = parallel_calculate_chunks(cutoff_time=cutoff_time_to_pass, chunk_size=chunk_size, feature_set=feature_set, approximate=approximate, training_window=training_window, save_progress=save_progress, entityset=entityset, n_jobs=n_jobs, no_unapproximated_aggs=no_unapproximated_aggs, cutoff_df_time_var=cutoff_df_time_var, target_time=target_time, pass_columns=pass_columns, progress_bar=progress_bar, dask_kwargs=dask_kwargs or {}, progress_callback=progress_callback) else: feature_matrix = calculate_chunk(cutoff_time=cutoff_time_to_pass, chunk_size=chunk_size, feature_set=feature_set, approximate=approximate, training_window=training_window, save_progress=save_progress, entityset=entityset, no_unapproximated_aggs=no_unapproximated_aggs, cutoff_df_time_var=cutoff_df_time_var, target_time=target_time, pass_columns=pass_columns, progress_bar=progress_bar, progress_callback=progress_callback) # ensure rows are sorted by input order feature_matrix = feature_matrix.reindex(pd.MultiIndex.from_frame(cutoff_time[["instance_id", "time"]], names=feature_matrix.index.names)) if not cutoff_time_in_index: feature_matrix.reset_index(level='time', drop=True, inplace=True) if save_progress and os.path.exists(os.path.join(save_progress, 'temp')): shutil.rmtree(os.path.join(save_progress, 'temp')) # force to 100% since we saved last 5 percent previous_progress = progress_bar.n progress_bar.update(progress_bar.total - progress_bar.n) if progress_callback is not None: update, progress_percent, time_elapsed = update_progress_callback_parameters(progress_bar, previous_progress) progress_callback(update, progress_percent, time_elapsed) progress_bar.refresh() progress_bar.close() return feature_matrix
def calculate_chunk(cutoff_time, chunk_size, feature_set, entityset, approximate, training_window, save_progress, no_unapproximated_aggs, cutoff_df_time_var, target_time, pass_columns, progress_bar=None, progress_callback=None): if not isinstance(feature_set, FeatureSet): feature_set = cloudpickle.loads(feature_set) feature_matrix = [] if no_unapproximated_aggs and approximate is not None: if entityset.time_type == NumericTimeIndex: group_time = np.inf else: group_time = datetime.now() for _, group in cutoff_time.groupby(cutoff_df_time_var): # if approximating, calculate the approximate features if approximate is not None: precalculated_features_trie = approximate_features( feature_set, group, window=approximate, entityset=entityset, training_window=training_window, ) else: precalculated_features_trie = None @save_csv_decorator(save_progress) def calc_results(time_last, ids, precalculated_features=None, training_window=None): update_progress_callback = None if progress_bar is not None: def update_progress_callback(done): previous_progress = progress_bar.n progress_bar.update(done * group.shape[0]) if progress_callback is not None: update, progress_percent, time_elapsed = update_progress_callback_parameters(progress_bar, previous_progress) progress_callback(update, progress_percent, time_elapsed) calculator = FeatureSetCalculator(entityset, feature_set, time_last, training_window=training_window, precalculated_features=precalculated_features) matrix = calculator.run(ids, progress_callback=update_progress_callback) return matrix # if all aggregations have been approximated, can calculate all together if no_unapproximated_aggs and approximate is not None: inner_grouped = [[group_time, group]] else: # if approximated features, set cutoff_time to unbinned time if precalculated_features_trie is not None: group[cutoff_df_time_var] = group[target_time] inner_grouped = group.groupby(cutoff_df_time_var, sort=True) if chunk_size is not None: inner_grouped = _chunk_dataframe_groups(inner_grouped, chunk_size) for time_last, group in inner_grouped: # sort group by instance id ids = group['instance_id'].sort_values().values if no_unapproximated_aggs and approximate is not None: window = None else: window = training_window # calculate values for those instances at time time_last _feature_matrix = calc_results(time_last, ids, precalculated_features=precalculated_features_trie, training_window=window) id_name = _feature_matrix.index.name # if approximate, merge feature matrix with group frame to get original # cutoff times and passed columns if approximate: indexer = group[['instance_id', target_time] + pass_columns] _feature_matrix = indexer.merge(_feature_matrix, left_on=['instance_id'], right_index=True, how='left') _feature_matrix.set_index(['instance_id', target_time], inplace=True) _feature_matrix.index.set_names([id_name, 'time'], inplace=True) _feature_matrix.sort_index(level=1, kind='mergesort', inplace=True) else: # all rows have same cutoff time. set time and add passed columns num_rows = _feature_matrix.shape[0] time_index = pd.Index([time_last] * num_rows, name='time') _feature_matrix.set_index(time_index, append=True, inplace=True) if len(pass_columns) > 0: pass_through = group[['instance_id', cutoff_df_time_var] + pass_columns] pass_through.rename(columns={'instance_id': id_name, cutoff_df_time_var: 'time'}, inplace=True) pass_through.set_index([id_name, 'time'], inplace=True) for col in pass_columns: _feature_matrix[col] = pass_through[col] feature_matrix.append(_feature_matrix) feature_matrix = pd.concat(feature_matrix) return feature_matrix def approximate_features(feature_set, cutoff_time, window, entityset, training_window=None): '''Given a set of features and cutoff_times to be passed to calculate_feature_matrix, calculates approximate values of some features to speed up calculations. Cutoff times are sorted into window-sized buckets and the approximate feature values are only calculated at one cutoff time for each bucket. ..note:: this only approximates DirectFeatures of AggregationFeatures, on the target entity. In future versions, it may also be possible to approximate these features on other top-level entities Args: cutoff_time (pd.DataFrame): specifies what time to calculate the features for each instance at. The resulting feature matrix will use data up to and including the cutoff_time. A DataFrame with 'instance_id' and 'time' columns. window (Timedelta or str): frequency to group instances with similar cutoff times by for features with costly calculations. For example, if bucket is 24 hours, all instances with cutoff times on the same day will use the same calculation for expensive features. entityset (:class:`.EntitySet`): An already initialized entityset. feature_set (:class:`.FeatureSet`): The features to be calculated. training_window (`Timedelta`, optional): Window defining how much older than the cutoff time data can be to be included when calculating the feature. If None, all older data is used. save_progress (str, optional): path to save intermediate computational results ''' approx_fms_trie = Trie(path_constructor=RelationshipPath) target_time_colname = 'target_time' cutoff_time[target_time_colname] = cutoff_time['time'] approx_cutoffs = bin_cutoff_times(cutoff_time.copy(), window) cutoff_df_time_var = 'time' cutoff_df_instance_var = 'instance_id' # should this order be by dependencies so that calculate_feature_matrix # doesn't skip approximating something? for relationship_path, approx_feature_names in feature_set.approximate_feature_trie: if not approx_feature_names: continue cutoffs_with_approx_e_ids, new_approx_entity_index_var = \ _add_approx_entity_index_var(entityset, feature_set.target_eid, approx_cutoffs.copy(), relationship_path) # Select only columns we care about columns_we_want = [new_approx_entity_index_var, cutoff_df_time_var, target_time_colname] cutoffs_with_approx_e_ids = cutoffs_with_approx_e_ids[columns_we_want] cutoffs_with_approx_e_ids = cutoffs_with_approx_e_ids.drop_duplicates() cutoffs_with_approx_e_ids.dropna(subset=[new_approx_entity_index_var], inplace=True) approx_features = [feature_set.features_by_name[name] for name in approx_feature_names] if cutoffs_with_approx_e_ids.empty: approx_fm = gen_empty_approx_features_df(approx_features) else: cutoffs_with_approx_e_ids.sort_values([cutoff_df_time_var, new_approx_entity_index_var], inplace=True) # CFM assumes specific column names for cutoff_time argument rename = {new_approx_entity_index_var: cutoff_df_instance_var} cutoff_time_to_pass = cutoffs_with_approx_e_ids.rename(columns=rename) cutoff_time_to_pass = cutoff_time_to_pass[[cutoff_df_instance_var, cutoff_df_time_var]] cutoff_time_to_pass.drop_duplicates(inplace=True) approx_fm = calculate_feature_matrix(approx_features, entityset, cutoff_time=cutoff_time_to_pass, training_window=training_window, approximate=None, cutoff_time_in_index=False, chunk_size=cutoff_time_to_pass.shape[0]) approx_fms_trie.get_node(relationship_path).value = approx_fm return approx_fms_trie def scatter_warning(num_scattered_workers, num_workers): if num_scattered_workers != num_workers: scatter_warning = "EntitySet was only scattered to {} out of {} workers" warnings.warn(scatter_warning.format(num_scattered_workers, num_workers)) def parallel_calculate_chunks(cutoff_time, chunk_size, feature_set, approximate, training_window, save_progress, entityset, n_jobs, no_unapproximated_aggs, cutoff_df_time_var, target_time, pass_columns, progress_bar, dask_kwargs=None, progress_callback=None): from distributed import as_completed, Future from dask.base import tokenize client = None cluster = None try: client, cluster = create_client_and_cluster(n_jobs=n_jobs, dask_kwargs=dask_kwargs, entityset_size=entityset.__sizeof__()) # scatter the entityset # denote future with leading underscore start = time.time() es_token = "EntitySet-{}".format(tokenize(entityset)) if es_token in client.list_datasets(): msg = "Using EntitySet persisted on the cluster as dataset {}" progress_bar.write(msg.format(es_token)) _es = client.get_dataset(es_token) else: _es = client.scatter([entityset])[0] client.publish_dataset(**{_es.key: _es}) # save features to a tempfile and scatter it pickled_feats = cloudpickle.dumps(feature_set) _saved_features = client.scatter(pickled_feats) client.replicate([_es, _saved_features]) num_scattered_workers = len(client.who_has([Future(es_token)]).get(es_token, [])) num_workers = len(client.scheduler_info()['workers'].values()) chunks = cutoff_time.groupby(cutoff_df_time_var) if not chunk_size: chunk_size = _handle_chunk_size(1.0 / num_workers, cutoff_time.shape[0]) chunks = _chunk_dataframe_groups(chunks, chunk_size) chunks = [df for _, df in chunks] if len(chunks) < num_workers: chunk_warning = "Fewer chunks ({}), than workers ({}) consider reducing the chunk size" warning_string = chunk_warning.format(len(chunks), num_workers) progress_bar.write(warning_string) scatter_warning(num_scattered_workers, num_workers) end = time.time() scatter_time = round(end - start) # if enabled, reset timer after scatter for better time remaining estimates if not progress_bar.disable: progress_bar.reset() scatter_string = "EntitySet scattered to {} workers in {} seconds" progress_bar.write(scatter_string.format(num_scattered_workers, scatter_time)) # map chunks # TODO: consider handling task submission dask kwargs _chunks = client.map(calculate_chunk, chunks, feature_set=_saved_features, chunk_size=None, entityset=_es, approximate=approximate, training_window=training_window, save_progress=save_progress, no_unapproximated_aggs=no_unapproximated_aggs, cutoff_df_time_var=cutoff_df_time_var, target_time=target_time, pass_columns=pass_columns, progress_bar=None, progress_callback=progress_callback) feature_matrix = [] iterator = as_completed(_chunks).batches() for batch in iterator: results = client.gather(batch) for result in results: feature_matrix.append(result) previous_progress = progress_bar.n progress_bar.update(result.shape[0]) if progress_callback is not None: update, progress_percent, time_elapsed = update_progress_callback_parameters(progress_bar, previous_progress) progress_callback(update, progress_percent, time_elapsed) except Exception: raise finally: if client is not None: client.close() if 'cluster' not in dask_kwargs and cluster is not None: cluster.close() feature_matrix = pd.concat(feature_matrix) return feature_matrix def _add_approx_entity_index_var(es, target_entity_id, cutoffs, path): """ Add a variable to the cutoff df linking it to the entity at the end of the path. Return the updated cutoff df and the name of this variable. The name will consist of the variables which were joined through. """ last_child_var = 'instance_id' last_parent_var = es[target_entity_id].index for _, relationship in path: child_vars = [last_parent_var, relationship.child_variable.id] child_df = es[relationship.child_entity.id].df[child_vars] # Rename relationship.child_variable to include the variables we have # joined through. new_var_name = '%s.%s' % (last_child_var, relationship.child_variable.id) to_rename = {relationship.child_variable.id: new_var_name} child_df = child_df.rename(columns=to_rename) cutoffs = cutoffs.merge(child_df, left_on=last_child_var, right_on=last_parent_var) # These will be used in the next iteration. last_child_var = new_var_name last_parent_var = relationship.parent_variable.id return cutoffs, new_var_name def _chunk_dataframe_groups(grouped, chunk_size): """chunks a grouped dataframe into groups no larger than chunk_size""" for group_key, group_df in grouped: for i in range(0, len(group_df), chunk_size): yield group_key, group_df.iloc[i:i + chunk_size] def _handle_chunk_size(chunk_size, total_size): if chunk_size is not None: assert chunk_size > 0, "Chunk size must be greater than 0" if chunk_size < 1: chunk_size = math.ceil(chunk_size * total_size) chunk_size = int(chunk_size) return chunk_size def update_progress_callback_parameters(progress_bar, previous_progress): update = (progress_bar.n - previous_progress) / progress_bar.total * 100 progress_percent = (progress_bar.n / progress_bar.total) * 100 time_elapsed = progress_bar.format_dict["elapsed"] return (update, progress_percent, time_elapsed)