nlp_primitives.UniversalSentenceEncoder¶
-
class
nlp_primitives.UniversalSentenceEncoder¶ Transforms a sentence or short paragraph to a vector using [tfhub model](https://tfhub.dev/google/universal-sentence-encoder/2)
- Parameters
None –
Examples
>>> universal_sentence_encoder = UniversalSentenceEncoder() >>> sentences = ["I like to eat pizza", ... "The roller coaster was built in 1885.", ... ""] >>> output = universal_sentence_encoder(sentences) >>> len(output) 512 >>> len(output[0]) 3 >>> values = output[:3, 0] >>> [round(x, 4) for x in values] [0.0178, 0.0616, -0.0089]
-
__init__()¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__()Initialize self.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueinput_typesmax_stack_depthnamenumber_output_featuresuses_calc_timeuses_full_entity